• Title/Summary/Keyword: Catalase

Search Result 2,051, Processing Time 0.034 seconds

Characteristic Changes in Korean Native Cattle Spermatozoa Frozen-Thawed with L-Cysteine and/or Catalase

  • Lee, Sang-Hee;Lee, Kyung-Jin;Woo, Jea-Seok;Lee, Seung-Hwan;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • The objective of this study was to evaluate the characteristics of Korean Native Cattle sperm frozen-thawed with L-cysteine and/or catalase. The semen from bulls was collected by the artificial vagina method, and Triladyl containing 20% egg-yolk and/or L-cysteine (L), catalase (C) and L-cysteine + catalase was added to the diluted semen for cryopreservation. The results showed that sperm viability was significantly higher in the L-cysteine + catalase ($69.49{\pm}3.16%$) group than in the control ($60.5{\pm}3.94%$) group (p<0.05). Acrosome damage was significantly lower in the L-cysteine ($17.12{\pm}1.08%$) group than in the control ($21.46{\pm}1.14%$), catalase ($20.54{\pm}0.76%$), and L-cysteine + catalase ($19.29{\pm}0.65%$) groups (p<0.05). In addition, the level of intact mitochondria in the spermatozoa was significantly higher in the L-cysteine ($58.65{\pm}1.39%$) group than in the control ($50.63{\pm}2.37%$) group (p<0.05). The hydrogen peroxide level in the frozen-thawed sperm was significantly lower in the L-cysteine ($3.74{\pm}1.66%$), catalase ($4.65{\pm}1.87%$), and L-cysteine + catalase ($8.11{\pm}2.15%$) groups than in the control ($13.22{\pm}1.6%$) group (p<0.05). The glutathione level was significantly higher in the L-cysteine ($1.33{\pm}0.03%$) group than in the control ($1.08{\pm}0.06%$), catalase ($1.05{\pm}0.02%$) and L-cysteine + catalase ($1.11{\pm}0.03%$) groups (p<0.05). In conclusion, L-cysteine and catalase could protect the membrane of Korean Native Cattle sperm from damage during sperm cryopreservation. Especially, L-cysteine was more effective for keeping acrosomes and mitochondria intactness during sperm cryopreservation.

Streptomyces coelicolor 의 Catalase 들의 분석

  • 김형표;이종수;하영칠;노정혜
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 1992
  • Srrepromycec. corlirolar produces at least 4 catalase activity bands with different electrophoretic mobilities on polyacrylamide gel which vary during development. Spores and mycelia at stationary phase produced all the activity bands(Cat1. 760 kr); Cat3-I, 170 kD: Cat3-2, 140 kD: Cat3-3. 130 kD; Cat4, 70 kD) except for Cat2 (300 kD). Mycelia at mid-logarithmic phase produced only Cat2 and Cat3-2 bands, and mycelia at late-logarithmic phase produced bands except Catl and Cat\ulcorner. Catalase-deficient mutants were screened in S. coelicalur by H201 bubbling test following NTG mutagenesis. Wc tested sevcral non-bubbling or slow-bubbling mutants for their catalase activities. The overall activities in cell extracts decreased more than 5 fold. Activity bands in native gel selectively decreased in intensity or disappeared. In all the non-bubbling mutants testcd, Cat3-2 band decreased significantly or disappeared. suggesting that Cat3-2 is the major catalase. The selective disappearance of bands in mutants suggest that each band is governed by different genes. We purified catalase activity from -:ell extracts obtained at late-logarithmic phase. Following chromatographies on Sepharose CL-4B. DEAE Sepharose CL-6B. Phcnyl Sepharose CL-4B. and hydroxylapatite columns. only the Cat3-2 activity was obtained. The native form of Cat3-2 has molecular weight of approximately 140 kD, judged by gel electrophoresis. Thc electrophoretic mobility on SDS-polyactylamide gel suggests that this enzyme contains 2 identical subunits of 67 kD.

  • PDF

Differential Expression of Three Catalase Genes in the Small Radish (Rhaphanus sativus L. var. sativus)

  • Kwon, Soon Il;Lee, Hyoungseok;An, Chung Sun
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • Three catalase cDNA clones were isolated from the small radish (Raphanus sativus L.). Their nucleotide and deduced amino acid sequences showed the greatest homology to those of Arabidopsis. Genomic Southern blot analysis, using RsCat1 cDNA as a probe, showed that catalases are encoded by small multigene family in the small radish. Nondenaturing polyacrylamide gels revealed the presence of several catalase isozymes, the levels of which varied among the organs examined. The isozyme activities were assigned the individual catalase genes by Northern analysis using total RNA from different organs. The three catalase genes were differentially expressed in response to treatments such as white light, xenobiotics, osmoticum, and UV. Their expression in seedlings was controlled by the circadian clock under a light/dark cycle and/or in constant light. Interestingly, RsCat1 transcripts peaked in the morning, while those of RsCat2 and RsCat3 peaked in the early evening. Our results suggest that the RsCat enzymes are involved in defense against the oxidative stress induced by environmental changes.

Effects of Cysteine on the Inactivation of Bovine Liver Catalase

  • R. Yousefi;A. A. Saboury;M. Ghadermarzi;A. A. Moosavi-Movahedi
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.567-570
    • /
    • 2000
  • Bovine liver catalase was exposed to cysteine, as a natural inactivator metabolize, causing autoxidation-generating $H_2O_2$ continuously. The catalase species concentrations and activity measurement were done by spectrophotometry in phosphate buffer 10mM, pH 6.5, and 27 $^{\circ}C$. The activity of catalase decreased continuously due to the conversion of active ferricatalase species, E-Fe (III), to an inactive enzyme species, E-Fe (IV). This conversion is related to the slow production of $H_2O_2generated$ by autoxidation of cysteine. The free SH-group of cysteine has an essential role in production of $H_2O_2$ and hence inactivation of catalase. NADPH can protect catalase against inactivation due to the conversion of inactive form of E-Fe (IV) to ferricatalase species, E-Fe (III).

Isolation and characterization of Vitreoscilla mutant defective in catalase-peroxidase hydroperoxidase I

  • Kim, Hee-Jung;Moon, Ja-Young;Lee, John-Hwa;Park, Kie-In
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.3
    • /
    • pp.291-304
    • /
    • 2007
  • Mutants of an obligate aerobic bacterium, Vitreoscilla, that have deficiency in heat-labile catalase-peroxidase hydroperoxidase I (HPI) were created by EMS treatment. The catalase-peroxidase HPI-deficient mutant showed substantially lower peroxidase activity in exponential and mid-stationary phase compared with the wild type strain. In late stationary phase, the mutant exhibited no peroxidase activity. Peroxidase deficiency in the mutant was revealed by polyacrylamide gels stained for peroxidase activity. Characteristically, catalase levels in the mutant increased about 14- and 8-fold during growth in the exponential and stationary phases, respectively, compared to those in the wild type, suggesting a compensatory effect for protection from $H_2O_2$ toxicity. The mutant showed differences in physiology from the wild type: retardation in growth rate and decrease in oxygen consumption. Both the wild type and the catalase-peroxidase HPI-deficient mutant of Vitreoscilla had lower growth rates in media containing increasing $H_2O_2$ concentrations. However, the mutant exhibited an additionally decreased growth rate after 6 to 8 h of growth compared to the wild type. The wild type was resistent up to 20 mM $H_2O_2$, whereas the mutant was very sensitive to high concentrations of exogenous $H_2O_2$. Although elevated catalase levels would provide protection of the bacteria from the deleterious effect of $H_2O_2$, it did not appear to be complete. Cell-free extracts of the mutant showed decreased NADH oxidation rates and higher accumulation of $H_2O_2$ during this oxidation. These results may account for the impaired growth and earlier onset of death phase by the catalase-peroxidase HPI-deficient mutant of Vitreoscilla.

Role of Adenosine in the Activation of Myocardial Catalase Induced by Brief Regional Ischemia

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Choi, Hong;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.53-57
    • /
    • 1999
  • The activities of myocardial antioxidant enzymes are known to increase in the hearts preconditioned with the brief episodes of ischemia. This study was undertaken to elucidate the possible involvement of adenosine in the stimulation of myocardial catalase induced by the brief regional ischemia in rabbit hearts. Coronary artery descending the middle anterior wall of left ventricle was occluded for 15 min, followed by 1 hr of reperfusion. Upon reperfusion after the brief ischemia, the activity of catalase increased significantly in both ischemic and non-ischemic parts of myocardium. Pretreatment of the heart with theophylline, a non-specific adenosine receptor blocker, completely abolished the increase of catalase activity in both the ischemic and non-ischemic regions of myocardium. On the other hand, the administration of exogenous adenosine instead of the ischemia failed to increase the catalase activity in in vivo hearts. Moreover, adenosine infusion did not affect the catalase activity in the isolated, perfused hearts either. These results suggest that the endogenous adenosine released from the ischemic myocardium is involved in the activation of catalase induced by brief ischemia, but that adenosine may not be a final direct activator of cellular catalase in the myocardium.

  • PDF

The Effects of Table Tennis Program on Self Efficacy, Cardiopulmonary Function, Serum Lipids, Catalase Activity in the Physical Disabilities (탁구프로그램이 지체장애인의 자기효능감, 심폐기능, 혈청지질, Catalase 활성도에 미치는 영향)

  • Jeong, Yeong-Ju;Park, Jae-Gyeong;Yu, Gyeong-Won;Lee, Hee-Kyung;Kim, Mi-Ran;Kim, Kweon-Young
    • Journal of Korean Biological Nursing Science
    • /
    • v.11 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Purpose: This study was conducted to evaluate the effects of table tennis program on self efficacy, cardiopulmonary function, serum lipids, catalase activity in the physical disabilities. Method: Physical disabilities were allocated to one of two groups: control group (n=7), experiment group (n=8). The experiment group took table tennis program four times a week for 12 weeks. Self efficacy was measured by questionnaire. Serum lipid profiles, catalase and cardiopulmonary function were checked after the exercise program and compared with pre-exercise data. Result: Self efficacy was significantly higher in the table tennis group. Maximum oxygen consumption and forced vital capacity were significantly increased and heart rate at rest was decreased in the table tennis group. Total cholesterol and triglyceride were decreased in the table tennis group. There was no significant change in catalase activity between two groups. Conclusion: These results indicate that table tennis program has positive effects on the health of the physical disabilities by improving the self efficacy and cardiopulmonary function and serum cholesterol profile.

  • PDF

Purification and Characterization of Catalase-2 from Deinococcus radiophilus

  • Oh, Kyung-A;Lee, Young-Nam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.144-148
    • /
    • 1998
  • A bifunctional catalase-peroxidase, designated catalase-2, of a UV resistant Deinococcus radiophilus was purified to electrophoretic homogeneity by both chromatographic and electrophoretic methods. Its molecular weight was 310 kDa and composed of a tetramer of 80 kDa subunits. The catalase-2 exerted its optimal activity at $30^{\circ}C$ and around pH 9. Its $K_m$ value for $H_{2}0_{2} $ was about 10 mM. It showed the typical ferric heme spectrum with maximum absorption at 403 nm which shifted to 419 nm in the presence of cyanide. The ratio of A40i' A2S0 was 0.48. Fifty percent inhibition of the enzyme activity was observed at $4.6{\times}10^{-6}$, $7.7{\times}10^{-6}$, and $3.0{\times}10^{-6}$ M of NaCN, $NaN_3$, and $NH_{2}OH$, respectively. The enzyme was thermostable and not sensitive to 3-amino-1,2,4-triazole. Treatment of the enzyme with ethanol-chloroform caused a partial loss (30%) of its activity. The catalase-2 was distinct from the Deinococcal bifunctional catalase-3 in a number of properties, particularly in its molecular structure and substrate affinity.

  • PDF

A Study on Coimmobilized Glucose Oxidase-Catalase System (Glucose Oxidase-Catalase동시 고정화 효소계의 반응)

  • Lee, Suk-Hee;Lee, Sang-Yeol;Uhm, Tai-Boong;Kim, Woo-Jung;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-40
    • /
    • 1985
  • The reactor performance of a coimmobilized glucose oxidase and catalase enzyme system was investigated. In the determination of efficiencies of glucose oxidase and catalase of dual, mixed and soluble systems, the dual type immobilized one was superior to either the soluble or to the mixed system. In the continuous plugflow bed reactor system of glucose oxidase and catalase, $k-d$, deactivation rare constant of glucose oxidase only and catalase/glucose oxidase = 10 were $1.12\;{\times}\;10^{-2}\;and\;2.17\;{\times}10^{-3}\;hr^{-1}$, respectively. In the effect of ${\tau}$, space time, the point of $O_2$ limitation is $5.5\;g{\cdot}hr/l$ in both catalase/glucose oxidase = 1 and 10. In the effect of $O_2$ concentration to reduce the $O_2$ diffusion limitation, it appeared that ${\tau}\;=\;8.3g{\cdot}r/l$ is the maximum point of $O_2$ concentration in both catalase/glucose oxidase = 1 and 10.

  • PDF

Effect of Light and Cadmium on the Activity and Isozyme Pattern of Catalase from Ric(Oryza sativa L.) (빛과 카드뮴이 벼 catalase 활성과 동위효소 발현에 미치는 영향)

  • Kim, Yoon-Kyoung;Lee, Mi-Young
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.287-292
    • /
    • 2006
  • The effects of cadmium on the catalase activity and isozyme patterns under light and dark conditions of rice(Oryza sativa L. cv. Dongjin) seedlings were examined. Cadmium treatment resulted in the notable enhancement of $H_2O_2$ contents in the seedling roots and leaves under light and dark conditions. The catalase isozyme patterns in the roots were different from those in the leaves, showing tissue-specific expression of the enzyme. Moreover, the expression patterns of catalase isozymes in the green seedling roots were different from those in the etiolated seedling roots following cadmium treatment. The increase of total catalase activity was about 16 times at 1 mM cadmium and marked inductions of the isozyme CAT1 and CAT2 contributed to this increase in the green seedling roots. On the other hand, in the etiolated seedling roots, total catalase activity was lower than that of control at 0.5 and 1 mM cadmium, even though catalase activity increased about 3 times at 0.1 mM cadmium. The 3 fold increase of total catalase activity was mainly due to the increase of CAT1, CAT3 and CAT4 at 0.1 mM cadmium. However, treatment with higher concentrations of cadmium decreased the activity of CAT2 and CAT4 in the etiolated roots. In the leaves, the catalase existed as three isozymes; one cationic isozyme CATc, one neutral isozyme CATn and one anionic isozyme CAT1 in the control. The isozyme patterns and total activities remained unaffected by cadmium under light and dark conditions in the seedling leaves. Taken together, it seems that cadmium-induced changes of catalase might be regulated by light in the roots, but not in the leaves.