Browse > Article
http://dx.doi.org/10.12750/JET.2014.29.2.163

Characteristic Changes in Korean Native Cattle Spermatozoa Frozen-Thawed with L-Cysteine and/or Catalase  

Lee, Sang-Hee (College of Animal Life Sciences, Kangwon National University)
Lee, Kyung-Jin (College of Animal Life Sciences, Kangwon National University)
Woo, Jea-Seok (National Institute of Animal Science, Hanwoo Experiment Station)
Lee, Seung-Hwan (National Institute of Animal Science, Hanwoo Experiment Station)
Cheong, Hee-Tae (School of Veterinary Medicine, Kangwon National University)
Yang, Boo-Keun (College of Animal Life Sciences, Kangwon National University)
Park, Choon-Keun (College of Animal Life Sciences, Kangwon National University)
Publication Information
Journal of Embryo Transfer / v.29, no.2, 2014 , pp. 163-169 More about this Journal
Abstract
The objective of this study was to evaluate the characteristics of Korean Native Cattle sperm frozen-thawed with L-cysteine and/or catalase. The semen from bulls was collected by the artificial vagina method, and Triladyl containing 20% egg-yolk and/or L-cysteine (L), catalase (C) and L-cysteine + catalase was added to the diluted semen for cryopreservation. The results showed that sperm viability was significantly higher in the L-cysteine + catalase ($69.49{\pm}3.16%$) group than in the control ($60.5{\pm}3.94%$) group (p<0.05). Acrosome damage was significantly lower in the L-cysteine ($17.12{\pm}1.08%$) group than in the control ($21.46{\pm}1.14%$), catalase ($20.54{\pm}0.76%$), and L-cysteine + catalase ($19.29{\pm}0.65%$) groups (p<0.05). In addition, the level of intact mitochondria in the spermatozoa was significantly higher in the L-cysteine ($58.65{\pm}1.39%$) group than in the control ($50.63{\pm}2.37%$) group (p<0.05). The hydrogen peroxide level in the frozen-thawed sperm was significantly lower in the L-cysteine ($3.74{\pm}1.66%$), catalase ($4.65{\pm}1.87%$), and L-cysteine + catalase ($8.11{\pm}2.15%$) groups than in the control ($13.22{\pm}1.6%$) group (p<0.05). The glutathione level was significantly higher in the L-cysteine ($1.33{\pm}0.03%$) group than in the control ($1.08{\pm}0.06%$), catalase ($1.05{\pm}0.02%$) and L-cysteine + catalase ($1.11{\pm}0.03%$) groups (p<0.05). In conclusion, L-cysteine and catalase could protect the membrane of Korean Native Cattle sperm from damage during sperm cryopreservation. Especially, L-cysteine was more effective for keeping acrosomes and mitochondria intactness during sperm cryopreservation.
Keywords
L-cysteine; catalase; cryopreservation; sperm ability; Korean Native Cattle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z and Irvine DS. 1998. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol. Reprod. 59 :1037-1046.   DOI   ScienceOn
2 Aboagla EM and Terada T. 2003. Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biol. Reprod. 69: 1245-1250.   DOI   ScienceOn
3 Agarwal A, allella KP, Allamaneni SS and Said TM. 2004. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod. Biomed. Online 8: 616-627.   DOI   ScienceOn
4 Aitken J and Fisher H. 1994. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16: 259-267.   DOI   ScienceOn
5 Aitken RJ. 1995. Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 7: 659-668.   DOI
6 Aitken RJ and Baker MA. 2004. Oxidative stress and male reproductive biology. Reprod. Fertil. Dev. 16: 581-588.   DOI
7 Alvarez JG and Storey BT. 1989. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res. 23: 77-90.   DOI
8 Baker HW, Brindle J, Irvine DS and Aitken RJ. 1996. Protective effect of antioxidants on the impairment of sperm motility by activated polymorphonuclear leukocytes. Fertil. Steril. 65: 411-419.   DOI
9 Bilodeau JF, Blanchette S, Gagnon C and Sirard MA. 2001. Thiols prevent $H_{2}O_{2}$-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology 56: 275-286.   DOI   ScienceOn
10 Chatterjee S, de Lamirande E and Gagnon C, 2001. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: protection by oxidized glutathione. Mol. Reprod. Dev. 60: 498-506.   DOI
11 Chen Y, Foote RH and Brockett CC. 1993. Effect of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm. Cryobiology 30: 423-431.   DOI
12 de Almeida M, Gazagne I, Jeulin C, Herry M, Belaisch-Allart J, Frydman R, Jouannet P and Testart J. 1989. In-vitro processing of sperm with autoantibodies and in-vitro fertilization results. Hum. Reprod. 4: 49-53.   DOI
13 Funahashi H and Sano H. 2005. Select antioxidants improve the function of extended boar semen stored at 10 degrees. Theriogenology 63: 1605-1616.   DOI   ScienceOn
14 Gadea J, Selles E, Marco MA, Coy P, Matas C, Romar R and Ruiz S. 2004. Decrease in glutathione content in boar sperm after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 62: 690-701.   DOI   ScienceOn
15 De Flora S, Izzotti A, D'Agostini F and Balansky RM. 2001. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis 22: 999-1013.   DOI   ScienceOn
16 Donnelly ET, Steele EK, McClure N and Lewis ES. 2001. Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum. Reprod. 16: 1191-1199.   DOI
17 Hermelo MP, Amador M, Alvarez R and Alonso A. 1987. Slimming treatment efficiency and changes in serum lipids and lipoproteins in obese adolescents. Exp. Clin. Endocrinol. 90: 347-360.   DOI
18 Jang HY, Jung YS, Cheong HT, Kim JT, Park CK, Kong HS, Lee HK and Yang BK. 2008. Effects of cell status of bovine oviduct epithelial cell (BOEC) on the development of bovine IVM/IVF embryos and gene expression in the BOEC used or not used for the embryo culture. Asian-Aust. J. Anim. Sci. 21: 980-987.   DOI
19 Jeong, BS and Yang X. 2001. Cysteine, glutathione, and Percoll treatments improve porcine oocyte maturation and fertilization in vitro. Mol. Reprod. Dev. 59: 330-335.   DOI   ScienceOn
20 Jeulin C, Soufir JC, Weber P, Laval-Martin D and Calvayrac R. 1989. Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 24: 185-196.   DOI
21 Jeyendran RS, Van der Ven HH, Rachagan SP, Perez-Peleaz M and Zaneveld LJ. 1989. Semen quality and in-vitro fertilization. Aust. N.Z.J. Obstet. Gynaecol. 29: 168-172.   DOI
22 Johnson LA, Weitze KF, Fiser P and Maxwell WMC. 2000. Storage of boar semen. Anim. Reprod. Sci. 62: 143-172.   DOI   ScienceOn
23 Mazor D, Golan E, Philip V, Katz M, Jafe A, Ben-Zvi Z and Meyerstein N. 1996. Red blood cell permeability to thiol compounds following oxidative stress. Eur. J. Haematol. 57: 241-246.
24 Meister A. 1992. On the antioxidant effects of ascorbic acid and glutathione. Biochem. Pharmacol. 44: 1905-1915.   DOI
25 Jones R and Mann T. 1977. Toxicity of exogenous fatty acid peroxides towards spermatozoa. J. Reprod. Fertil. 50: 255-260.   DOI
26 Lee KJ, Seo GB, Lee YS, Yoo HJ, Cheong HT, Lee SH, Yang BK and Park CK. 2011. Effect of methyl-beta-cyclodextrin (MBCD) on cryopreservation of bull spermatozoa. Reprod. Dev. Biol. 35:295-300.
27 Michael A, Alexopoulos C, Pontiki E, Hadjipavlou-Litina D, Saratsis P and Boscos C. 2007. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology 68: 204-212.   DOI   ScienceOn
28 Nagy S, Jansen J, Topper EK and Gadella BM. 2003. A triplestain flow cytometric method to assess plasma- and acrosomemembrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68: 1828-1835.   DOI
29 O'Flaherty C, Beconi M and Beorlegui N. 1997. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia 29: 269-275.
30 Roca J, Rodriguez MJ, Gil MA, Carvajal G, Garcia EM, Cuello C, Vazquez JM and Martinez EA. 2005. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J. Androl. 26: 15-24.
31 Salisbury GW and Lodge JR. 1963. Respiratory quotients of bovine spermatozoa. J. Reprod. Fertil. 5: 195-202.   DOI
32 Sikka SC. 2004. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J. Androl. 25: 5-18.   DOI
33 Storey BT. 1997. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Mol. Hum. Reprod. 3: 203-213.   DOI   ScienceOn
34 Zhao Y and Buhr MM. 1995. Cryopreservation extenders affect calcium flux in bovine spermatozoa during a temperature challenge. J. Androl. 16: 278-285.
35 Szczesniak-Fabianczyk B, Bochenek M, Smorag Z and Ryszka F. 2003. Effect of antioxidants added to boar semen extender on the semen survival time and sperm chromatin structure. Reprod. Biol. 3: 81-87.
36 Thiangtum K, Pinyopummin A, Hori T, Kawakami E and Tsutsui T. 2009. Effect of catalase and superoxide dismutase on motility, viability and acrosomal integrity of frozen-thawed cat spermatozoa. Reprod. Domest. Anim. Suppl. (44), 2: 369-372.
37 Watson PF. 2000. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60-61: 481-492.   DOI   ScienceOn