• Title/Summary/Keyword: Catadioptric mirror

Search Result 21, Processing Time 0.025 seconds

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Range finding algorithm of equidistance stereo catadioptric mirror (등거리 스테레오 전방위 렌즈 영상에 대한 위치 측정 알고리즘)

  • Choi, Young-Ho
    • Journal of Internet Computing and Services
    • /
    • v.6 no.6
    • /
    • pp.149-161
    • /
    • 2005
  • Catadioptric mirrors are widely used in automatic surveillance system. The major drawback of catadioptric mirror is its unequal image resolution. Equidistance catadioptric mirror can be the solution to this problem. Even double panoramic structure can generate stereo images with single camera system. So two images obtained from double panoramic equidistance catadioptric mirror can be used in finding the depth and height values of object's points. But compared to the single catadioptric mirror. the image size of double panoramic system is relatively small. This leads to the severe accuracy problem in estimation. The exact axial alignment and the exact mount of mirror are the sources that can be avoided but the focal length variation is inevitable. In this paper, the effects of focal length variation on the computation of depth and height of object' point are explained and the effective focal length finding algorithm, using the assumption that the object's viewing angles are almost same in stereo images, is presented.

  • PDF

Catadioptric Omnidirectional Stereo Imaging System and Reconstruction of 3-dimensional Coordinates (Catadioptric 전방향 스테레오 영상시스템 및 3차원 좌표 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4108-4114
    • /
    • 2015
  • An image acquisition by using an optical mirror is called as a catadioptric method. The catadioptric imaging method is generally used for acquisition of 360-degree all directional visual information in an image. An exemplar omnidirectional optical mirror is the bowl-shaped hyperbolic mirror. In this paper, a single camera omnidirectional stereo imaging method is studied with an additional concave lens. It is possible to obtain 3 dimensional coordinates of environmental objects from the omnidirectional stereo image by matching the stereo image having different view points. The omnidirectional stereo imaging system in this paper is cost-effective and relatively easy for correspondence matching because of consistent camera intrinsic parameters in the stereo image. The parameters of the imaging system are extracted through 3-step calibration and the performance for 3-dimensional coordinates reconstruction is verified through experiments in this paper. Measurable range of the proposed imaging system is also presented by depth-resolution analysis.

Parameter Estimation for Range Finding Algorithm of Equidistance Stereo Catadioptric Mirrors (등거리 스테레오 전방위 렌즈의 위치 측정 알고리듬을 위한 파라미터 측정에 관한 연구)

  • Choi, Young-Ho;Kang, Min-Goo;Zo, Moon-Shin
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.117-123
    • /
    • 2007
  • Catadioptric mirrors are widely used in automatic surveillance system. The major drawback of catadioptric mirror is its unequal image resolution. Equidistance catadioptric mirrir can be the solution to this problem. The exact axial alignment and the exact mount of mirror are the sources that can be avoided but the focal length variation is inevitable. In this paper, the effects of focal length variation on the computation of depth and height of object' point are explained and the effective and simple focal length finding algorithm is presented. First two object's points are selected, and the counterparts on the other stereo image are to be found using MSE criterion. Using four pixel distance from the image center, the assumed focal length is calculated. If the obtained focal length is different from the exact focal length, 24mm, the focal length value is modified by the proposed method. The method is very simple and gives the comparable results with the earlier sophisticated method.

  • PDF

Localization of 3D Spatial Information from Single Omni-Directional Image (단일 전방향 영상을 이용한 공간 정보의 측정)

  • Kang Hyun-Deok;Jo Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.686-692
    • /
    • 2006
  • This paper shows the calculation of 3D geometric information such as height, direction and distance under the constraints of a catadioptric camera system. The catadioptric camera system satisfies the single viewpoint constraints adopting hyperboloidal mirror. To calculate the 3D information with a single omni-directional image, the points are assumed to lie in perpendicular to the ground. The infinite plane is also detected as a circle from the structure of the mirror and camera. The analytic experiments verify the correctness of theory using real images taken in indoor environments like rooms or corridors. Thus, the experimental results show the applicability to calculate the 3D geometric information using single omni-directional images.

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

A Design of Mid-wave Infrared Integral Catadioptric Optical System with Wide FOV

  • Yu, Lin Yao;Jia, Hong Guang;Wei, Qun;Jiang, Hu Hai;Zhang, Tian Yi;Wang, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • In order to deduce the difficulty of fixing the Ritchey-Chretien (R-C) dual reflective optical system and enhance the stability of the secondary mirror, a compact integral structure is presented here composed of two transmitting and two reflective aspheric surfaces. The four surfaces were manufactured from a single germanium lens and integrated together. The two reflective surfaces formed by coating the inner reflecting films were assembled in one lens. It makes the installation of the two mirrors easier and the structure of the secondary mirror more stable. A design of mid-wave infrared (MWIR) compact imaging system is presented with a spectral range chosen as $3.7-4.8{\mu}m$. The effective focal length is f=90 mm. The field of view (FOV) for the lens is $4.88^{\circ}$. It has good imaging capability with Modulation Transfer Function (MTF) of all field of view more than 0.55 close to the diffraction limitation. Outdoor experiments were carried out and it is shown that the integral catadioptric optical system performs well on imaging.

Single Camera Omnidirectional Stereo Imaging System (단일 카메라 전방향 스테레오 영상 시스템)

  • Yi, Soo-Yeong;Choi, Byung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.400-405
    • /
    • 2009
  • A new method for the catadioptric omnidirectional stereo vision with single camera is presented in this paper. The proposed method uses a concave lens with a convex mirror. Since the optical part of the proposed method is simple and commercially available, the resultant omnidirectional stereo system becomes versatile and cost-effective. The closed-form solution for 3D distance computation is presented based on the simple optics including the reflection and the reflection of the convex mirror and the concave lens. The compactness of the system and the simplicity of the image processing make the omnidirectional stereo system appropriate for real-time applications such as autonomous navigation of a mobile robot or the object manipulation. In order to verify the feasibility of the proposed method, an experimental prototype is implemented.

Optimal Geometric Design of Secondary Mirror Supporter in Catadioptric Optical System for Observation Reconnaissance Using Response Surface Methodology (반응 표면 분석법을 이용한 감시 정찰용 반사 굴절 광학계 부경 지지대의 형상 최적 설계)

  • Lee, Sang Eun;Kim, Dae Hee;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.435-442
    • /
    • 2017
  • A catadioptric optical system produces images by refraction and reflection. To improve the image quality, the shape of the secondary mirror supporters should be determined to ensure that the centering error and tilt of secondary mirror are very small, and the main mirror receives the maximum amount of light. Furthermore, random acceleration vibration has a severe effect on the optical system for observation reconnaissance. In order to obtain the best design under these circumstances, the volume of the secondary mirror supporter must be minimized while satisfying the constraints expressed in standard deviations of the centering error and tilt. It is difficult to analytically calculate the design sensitivities of the standard deviations, because they are statistically defined. Hence, after their second-order regression equations were determined using a response surface methodology, an optimal geometric design was obtained. As a result, it was found that the method proposed in this paper, which included a random vibration analysis, was effective in obtaining the optimal design for a secondary mirror supporter with robustness.

Wide Field-of-View Imaging Using a Combined Hyperbolic Mirror

  • Yi, Sooyeong;Ko, Youngjun
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.336-343
    • /
    • 2017
  • A wide field-of-view (FOV) image contains more visual information than a conventional image. This study proposes a new type of hyperbolic mirror for wide FOV image acquisition. The proposed mirror consists of a hyperbolic cylindrical section and a bowl-shaped hyperbolic omnidirectional section. Using an imaging system with this mirror, it is possible to achieve a $213.8^{\circ}$ horizontal and a $126.94^{\circ}$ vertical maximum FOV. Parameters of each section of the mirror are designed to be continuous at the junction of the two parts, and the resultant image is seamless. The image-acquisition model is obtained using ray-tracing optics. To rectify the geometrical distortion of the original image due to the mirror, an image-restoration algorithm based on conformal projection is presented in this study. The performance of the proposed imaging system with the hyperbolic mirror and its image-restoration algorithm are verified by experiments.