• 제목/요약/키워드: Catabolite repression

검색결과 75건 처리시간 0.03초

Characterization of the Catabolite Control Protein (CcpA) Gene from Leuconostoc mesenteroides SY1

  • PARK JAE-YONG;PARK JIN-SIK;KIM JONG-HWAN;JEONG SEON-JU;CHUN JIYEON;LEE JONG-HOON;KIM JEONG HWAN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.749-755
    • /
    • 2005
  • The ccpA gene encoding catabolite control protein A (CcpA) of Leuconostoc mesenteroides SYl, a strain isolated from kimchi, was cloned, sequenced, analyzed for transcript, and overexpressed in Escherichia coli. The ccpA ORF (open reading frame) is 1,011 bp in size, which can encode a protein of 336 amino acid residues with a molecular mass of 36,739 Da. The transcription start site was mapped at a position 49 nucleotides upstream of the start codon, and promoter sequences were also identified. The putative cre site overlapped with the -35 promoter sequence. The deduced amino acid sequence of the CcpA contained the helix-turn-helix motif found in many DNA-binding regulatory proteins. CcpA from 1. mesenteroides SY1 had $54.6\%$ identity with CcpA from Lactobacillus casei. The Northern blot experiment showed that ccpA was transcribed as a single 1.1 kb transcript, and transcription was repressed when grown on media containing glucose. CcpA was overproduced in E. coli BL21(DE3) cells using the pET expression vector, and purified to an apparent homogeneity. Gel Mobility Shift Assay with purified CcpA and a DNA fragment containing the ere sequence of the $\alpha$-galactosidase gene (aga) from L. mesenteroides SY1 revealed that CcpA bound specifically to the cre site of aga.

Production of 3-Ketosteroid-delta-1-Dehydrogenase by a Two-stage Continuous Culture

  • Ryu, D.Y.;Lee, B.K.;Thoma, R.W.
    • 한국미생물·생명공학회지
    • /
    • 제2권1호
    • /
    • pp.29-35
    • /
    • 1974
  • We have studied the applicability of the principles and inherent advantages of the two-stage dontinuous uclture technique to an enzyme process for the purpose of improving and optimizing the productivity of 3-ketosteroid-delta-1-dehydrogenase. By using a two-stage continuous culture system, the growth st ageand enzyme produdtion stage are separated. In each stage an optimal set of toperaing conditions was determined, and this was tested for feasibility for the period of 10 days. During this period, at least 70% of the maximum enzyme productivity could be maintained. The important design parameters studied are: (1) optimal specific growth rate in the first stage which corresponds to the maximal cell productivity, (2) the optimal dilution rate in the second stage which in turn determines the size of second stage fermentor and the mean residence time of cells in the second stage, (3) cell concentration in both stages, add (4) the specific enzyme productivity and enzyme productivity of the second stage. In addition, by using two-stage continuous culture system we have been able to reduce or eliminate the effect of catabolite repression due to high medium concentration and the adverse effect of the solvent used to dissolve the inducer. We have found the balance between the opposing effects of induction and repression in the second stage judging from the observation that the enzyme productivity goes through a maximum.

  • PDF

Xylanase를 생산하는 내열성 Bacillus속 균주의 분리와 효소생산 조건 (isolation of Xylanase-producing Thermo-tolerant Bacillus sp. and Its Enzyme Production)

  • 박영서;강미영;장학길;박귀근;강종백;이정기;오태광
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.370-377
    • /
    • 1999
  • Thermo-tolerant bacterium producing the xylanase was isolated from soil and identified as Bacillus pumilus. This strain, named Bacillus pumilus TX703, was able to grow ad produce xylanase at the culture temperature of 5$0^{\circ}C$. The maximum xylanase production was obtained when 1%(w/v) birchwood xylan and 1% (w/v) soytone were used as carbon source and nitrogen source, respectively. The biosynthesis of xylanase was under the catabolite repression induced by glucose in the culture medium, and it was completely inhibited in the presence of 0.2% (w/v) glucose. The maximum activity of xylanase was observed from pH8.0 to 9.0 and from 50 to 6$0^{\circ}C$ and the enzyme was highly heat-stable, whose activity remained was over 50% at 8$0^{\circ}C$, and was quite stable from pH5.0 to 10.0.

  • PDF

알칼리 내성 Bacillus sp.속 유래 Promoter의 발현특성 (Studies on the Properties of the Promoter from Alkali-Toleran t Bacillus sp.)

  • 박희경;박영서;김진만;유주현
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.21-24
    • /
    • 1991
  • 알칼리 내성 Bacillus sp. YA-14의 chromosomal DNA로부터 분리된 promoter를 subcloning하여 생화학적 특성을 조사하였다. B.subtilis와 promoter 공여균주, Bacillus sp. YA-14에서 promoter의 활성은 포자형성 초기단계에서 급격히 증가하였으며 1.0(w/v) glucose 첨가로 promoter 활성이 억제되었고 c-GMP에 의해 저해되었던 활성이 증가하였다.

  • PDF

The Regulation of Alpha-Amylase Synthesis in Bacillus subtilis

  • Won, Mi-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권4호
    • /
    • pp.256-260
    • /
    • 1991
  • In B. subtilis, $\alpha$-amylase synthesis is regulated by amyR located directly on the upstream of amyE. Three different amyR alleles have been reported, amyR1, amyR2 and amyR3. Strains bearing the gra-10 mutation which confers derepression for catabolite repression has GlongrightarrowA transition mutation at +5 of amyR1. S1 nuclease mapping demonstrated that transcription initiated at 8 bases downstream from the -10 region of putative E$\sigma^{A}$ promoter P1 in amyR1 and gra-10. In amyR2, the major transcription initiatd at the same place and the minor, 10 bases downstream from -10 of P2. The transcript from P2 contributed approximately 15-20% of total amyE mRNA. S1 nuclease protection experiment indicated that amyE mRNA levels corresponded to the rate of synthesis assumed by specific activities of $\alpha$-amylase in culture supernatants, suggesting that $\alpha$-amylase synthesis is regulated at the level of transcription.n.

  • PDF

Kinetic Models for Growth and Product Formation on Multiple Substrates

  • Kwon, Yun-Joong;Engler, Cady R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.587-592
    • /
    • 2005
  • Hydrolyzates from lignocellulosic biomass contain a mixture of simple sugars; the predominant ones being glucose, cellobiose and xylose. The fermentation of such mixtures to ethanol or other chemicals requires an understanding of how each of these substrates is utilized. Candida lusitaniae can efficiently produce ethanol from both glucose and cellobiose and is an attractive organism for ethanol production. Experiments were performed to obtain kinetic data for ethanol production from glucose, cellobiose and xylose. Various combinations were tested in order to determine kinetic behavior with multiple carbon sources. Glucose was shown to repress the utilization of cellobiose and xylose. However, cellobiose and xylose were simultaneously utilized after glucose depletion. Maximum volumetric ethanol production rates were 0.56, 0.33, and 0.003 g/L h from glucose, cellobiose and xylose, respectively. A kinetic model based on cAMP mediated catabolite repression was developed. This model adequately described the growth and ethanol production from a mixture of sugars in a batch culture.

Alkaline Protease of a Genetically-Engineered Aspergillus oryzae for the Use as a Silver Recovery Agent from Used X-Ray Film

  • Samarntarn, Warin;Morakot Tanticharoen
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.568-571
    • /
    • 1999
  • Aspergillus oryzae U1521, which was a genetically engineered strain, produced 1,000,600 U per g . glucose of extracellular alkaline protease within 72 h in a submerged fermentation. However, the alkaline protease was not detected during the first 24 h. Northern blot analysis indicated that the enzyme synthesis was repressed at the transcriptional level during the lag period. Both catabolite repression and pH of the growth medium significantly affected the enzyme production. Use of this enzyme as a silver recovery agent from used X-ray film was confirmed by experiments in the shake-flask scale.

  • PDF

포도당에 의해 합성억제되는 알카리성 Lipase를 생성분비하는 Pseudomonas aeruginosa 균주의 분리 및 이 효소의 정제 (Isolation of a Pseudomonas aeruginosa Strain Producing an Extracellular Alkaline Lipase Catabolitely Regulated by Glucose, and Purification of the Lipase)

  • 이정미;김란숙;김병오;박영덕;진익렬
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.239-246
    • /
    • 1993
  • Producing an extracellular alkaline lipase, this isolate JM123 was identified as a Pseudomonas aeruginosa strain from the results of the analyses of its morphological, biochemical and physiological properties. This strain showed the highest productivity of alkaline lipase when grown at pH 9.0 and 30C for 13-20 hours in the medium of 2% starch, 1% soytone, 0.5% peptone and 1% MgSO4.7H2O. However, this enzyme was greatly repressed when grown in the glucose containing medium. The culture broth was fractionated by the order of the ammonium sulfate precipitation, Sephadex G-200 gel filtration, DEAE-cellulose column chromatography, and Sephadex G-150 gel filtration.

  • PDF

고온성 변이균주 Talaromyces luteus 2004의 분리와 Carboxymethylcellulase의 생성 조절 및 효소의 특성 (Isolation of a Thermophilic Mutant, Talaromyces luteus 2004 in relation to the Regulation of Carboxymethylcellulase Production and Enzymatic characteristics)

  • 홍미경;한효영;정영희;민경희
    • 한국균학회지
    • /
    • 제24권3호통권78호
    • /
    • pp.206-213
    • /
    • 1996
  • Talaromyces luteus 6112 균주에 돌연변이원 N-methyl-N'-nitro-N-nitrosoguanidine을 처리하여 고온성 돌연변이주인 T. luteus 2004를 선별하였다. T. luteus 2004 균주는 고온성 섬유소 분해 효소인 carboxymethylcellulase(CMCase)와 그 외의 다당류 분해효소인 avicellase, xylanase, ${\beta}-glucosidase$ 등을 생성하였다. 고온성 섬유소 분해효소의 생성은 3% carboxymethylcellulose(CMC) 최소배지에서 가장 높게 유도되었으므로 CMC가 CMCase 생성의 유도물질임을 알 수 있었다. 고온성 섬유소분해효소의 생성에 있어서 포도당과 D-cellobiose는 CMCase 생성에 catabolite repressor로 작용함을 보여 주었다. T. luteus 2004의 섬유소 분해효소의 효소학적 특성은 $70^{\circ}C$, pH 4에서 최고의 활성을 보여주는 고온성 효소이므로 대체에너지 개발에 활용 가능한 균주로 사료된다.

  • PDF

$\alpha$-Amylase 생산성이 높은 Bacillus sp. HG4의 분리 및 효소 특성 (Isolation of $\alpha$-Amylase Hyperproducing Strain HG4 from Bacillus sp. and Some Properties of the Enzyme)

  • 김무성;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권5호
    • /
    • pp.464-469
    • /
    • 1991
  • $\alpha$-Amylase를 생산하는 Bacillus sp. 2B를 토양에서 분리하였으며 이 균주에 반복적으로 돌연변이원인 NTG를 처리하여 효소생산성이 증대된 변이주를 유도하였다. $\alpha$-Amylase 고 생산성 균주의 효율적인 획득방법으로 glucose에 의한 $\alpha$-amylase의 생성억제를 받지않는 변이주를 분리한 결과, 효소생산성이 약 30배 향상된 변이주 Bacillus sp. HG4를 획득하였다. 이 균주는 lactose를 탄소원으로 하여 최대 효소생성능을 나타내었으며 빠른 균체성장 및 최대 효소생성시기에 균체 lysis가 적은 점 등 산업적으로 사용하기에 유리한 특성을 가진 것으로 판단된다.

  • PDF