• Title/Summary/Keyword: Casting technique

Search Result 277, Processing Time 0.028 seconds

Coupled Analysis of Heat Transfer, Fluid Flow and Solidification in the Filling of Castings (용탕충진과정에 있어서 열 및 유동을 포함한 2차원 응고해석)

  • Kim, Sung-Bin;Cho, In-Sung;Kim, Jin-Su;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.424-431
    • /
    • 1993
  • A Numerical technique has been developed for the coupled heat transfer and fluid flow calculation during the casting process. In this method the SMAC technique was coupled with the concept of Volume of Fluid(VOF) to calculate melt free surface and velocity profiles within the melt, and the Energy Marker method coupled with the finite difference method was proposed for the convective and conductive heat transfer analysis in the casting. When comparing numerical calculations with experimental observations, a close correlation was evident. It has been shown that this technique is useful for proper gating and casting design, especially for thin-walled castings.

  • PDF

Detectibility of Internal Defects in Aluminum Die-casted Rotor Using Ultrasonic Technique (초음파를 이용한 알루미늄 다이캐스팅 회전자 내부 결함 검출능 평가에 관한 연구)

  • Lee, Jun-Hyeon;Choe, Sang-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.185-191
    • /
    • 2001
  • The aluminum die-casting technique has been widely used to manufacture a rotor in motor industry because of its highly productivity, even though it sometime causes the various type of defects in the rotor, such as shrinkage, cavity, blow holes etc. which results in the decrease of the efficiency of system. Therefore the development of reliable technique to detect the flaws in the rotor is strongly needed not only to control quality assurance but to improve its efficiency. In this study, the wide variety of ultrasonic techniques have been applied to detect the flaws in the rotor and then to discuss the detectibility of the flaw and the applicability for NDE tool in the aluminum die-casting rotor.

  • PDF

Rapid Tooling of Porous Ceramic Mold Using Slip Casting (슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작)

  • Chung, Sung-Il;Jeong, Du-Su;Im, Yong-Gwan;Jeong, Hae-Do;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

Molten Metal Flow Analysis of Casting Process Using SPH Method (SPH 기법을 이용한 주조공정 용탕 주입 유동 해석)

  • Park, Byung Lae;Lee, Sang Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.

Asymmetric Rolling of Twin-roll Cast Al-5.5Mg-0.3Cu Alloy Sheet : Mechanical Properties and Formability (박판주조한 Al-5.5Mg-0.3Cu 합금 판재의 이속압연 : 기계적 특성 및 성형성 평가)

  • Cheon, Boo-Hyeon;Han, Jun-Hyun;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.243-249
    • /
    • 2011
  • This study describes the feasibility of producing high-strength Al alloy sheet with a high solute content using a combined technique of twin-roll strip casting and asymmetric rolling. The Al sheet produced in this study exhibited excellent formability ($\overline{r}$ =1.0, $\Delta$r=0.16) and mechanical properties ($\sigma_{TS}$~305 MPa, $\epsilon$~33%), that, cannot be feasibly obtained via the conventional technique based on ingot casting and rolling. The structural origin of the observed properties, especially enhanced formability, was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. Our evaluation of the mechanical properties and formability leads us to conclude that the combination of strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to the level beyond what the conventional techniques can reach.

Die Making and Product Prototype Fabrication in Investment Casting by SLA Rapid Prototyping Technique (급속조형기술을 이용한 쾌속정밀주조 금형 및 시제품 제작)

  • Park, Moon-Sun;Kim, Dae-Hwan;Kwak, Jeong-Gi;Hwang, Sang-Moon;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.74-80
    • /
    • 1999
  • In this study, a stereolithography apparatus (SLA) prototype is used as a master model to be transformed into the silicone pattern by vacuum tool forming. The tool for the first prototype is fabricated by using this silicone pattern. Following this procedure, a temporary tool with metal powder and epoxy for wax injection is prepared for the die set of quick change type which consists of upper and lower base die나 and an insert die. The die set of quick change type appears to be very effective in casting operation by changing tools rapidly. The original wax pattern is formed through the die set, and is made of lost-was. Finally the lost-wax pattern is applied to investment casting. The final casting product is checked regarding its dimensional accuracy.

  • PDF

A Study on the Forming Analysis of the 2 Cavity Die Casting for Automobile Valve Housing (자동차용 밸브 하우징의 2 캐비티 다이캐스팅 성형해석에 관한 연구)

  • Lee, Jong-Hyung;Yi, Chang-Heon;Lee, Sang-Young;Ha, Hong-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Al used in automobiles is mostly material, and according to the innovation of technique is in rapid development. Al die casting is an important field as today's trend of lightweight on automobiles. Valve housing in steering system improves driver's controling. The valve housing which is widely reliable to the most automobiles are developed this moment in our automobile industry. Therefore, they are produced by casting method which cost three times or even more expensive in production. If valve housing which is a part of steering system is produced by gravity casting, the space for manufacturing equipment will be increased, and more time and workers would be brought into service. For such reason, die casting would replace gravity casting in order to minimize cost of time, manpower, and working space. This study is the forming analysis of the 2 cavity die casting for automobile valve housing.

  • PDF

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.

Casting and Soldering Techniques of the Bronze Buddhist Gong from the Sudasa Temple Site in Suhang-ri, Pyeongchang (평창 수다사지 청동금고 주조기법과 보수 방식)

  • Huh, Ilkwon;Ahn, Songyee;Yun, Eunyoung
    • Conservation Science in Museum
    • /
    • v.15
    • /
    • pp.4-25
    • /
    • 2014
  • Chuncheon National Museum currently own a bronze Buddhist gong that was discovered in 1987 at the Sudasa Temple site of in Suhangri, Pyeongchang. Significantly, showing many casting defects and areas where was repaired, the Gong offered crucial information about the casting technique. To better understand the production technique, scientific analysis was conducted on various aspects of the gong, including its materials, moulds, chaplets, and defects. Composition analysis revealed that the gong was composed primarily of copper 71.6wt%, tin 18.2wt%, and lead 7.2wt%, along with about 1wt% of both arsenic and antimony. The lead content of the chaplets was higher than that of the gong, and the lead content was the highest in the solder, which was used to fill holes after casting. Surface analysis, based on the parting line, indicated that the gong was most likely produced with the sand casting process. Radiography and close examination of the surface disclosed various casting defects e.g., Cold Shut, Surface Folds, Misrun, and Blowholes Adjacent to Chaplets and their possible causes. The casting defects of a few holes were filled with soft solder.