• 제목/요약/키워드: Casting speed

Search Result 215, Processing Time 0.025 seconds

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS (카복실레이트계 시멘트의 접착력에 관한 비교 연구)

  • Lee, Han-Moo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Fracture resistances of zirconia, cast Ni-Cr, and fiber-glass composite posts under all-ceramic crowns in endodontically treated premolars

  • Habibzadeh, Sareh;Rajati, Hamid Reza;Hajmiragha, Habib;Esmailzadeh, Shima;Kharazifard, Mohamadjavad
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.170-175
    • /
    • 2017
  • PURPOSE. The aim of the present study was to evaluate the fracture resistances of zirconia, cast nickel-chromium alloy (Ni-Cr), and fiber-composite post systems under all-ceramic crowns in endodontically treated mandibular first premolars. MATERIALS AND METHODS. A total of 36 extracted human mandibular premolars were selected, subjected to standard endodontic treatment, and divided into three groups (n=12) as follows: cast Ni-Cr post-and-core, one-piece custom-milled zirconia post-and-core, and prefabricated fiber-glass post with composite resin core. Each specimen had an all-ceramic crown with zirconia coping and was then loaded to failure using a universal testing machine at a cross-head speed of 0.5 mm/min, at an angle of 45 degrees to the long axis of the roots. Fracture resistance and modes of failure were analyzed. The significance of the results was assessed using analysis of variance (ANOVA) and Tukey honest significance difference (HSD) tests (${\alpha}=.05$). RESULTS. Fiber-glass posts with composite cores showed the highest fracture resistance values ($915.70{\pm}323N$), and the zirconia post system showed the lowest resistance ($435.34{\pm}220N$). The corresponding mean value for the Ni-Cr casting post and cores was reported as $780.59{\pm}270N$. The differences among the groups were statistically significant (P<.05) for the zirconia group, as tested by ANOVA and Tukey HSD tests. CONCLUSION. The fracture resistance of zirconia post-and-core systems was found to be significantly lower than those of fiber-glass and cast Ni-Cr post systems. Moreover, catastrophic and non-restorable fractures were more prevalent in teeth restored by zirconia posts.

Analysis of Shear Behavior of Shear Key for Concrete Track on Railway Bridge Considering Construction Joint (타설 경계면을 고려한 철도교 콘크리트궤도 전단키의 전단 거동 해석)

  • Lee, Seong-Cheol;Kang, Yun-Suk;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2016
  • Concrete track on railway bridges should be designed to effectively respond to the movement of the superstructure of the bridge. In the design procedure, shear keys are generally placed on the protection concrete layer (PCL) before casting the concrete track so the shear force due to slip between the concrete track and the bridge super-structure can be transferred. In this paper, a nonlinear structural analysis procedure that considers the construction joint has been developed to predict the shear behavior of a shear key. With the developed analysis procedure, it was possible to predict the shear force-shear slip response at the construction joint in a shear key by considering the friction of concrete surface and the dowel action of the rebars. The analysis results showed good agreement with the test results for 4 specimens.

Interlaced Scanning Volume Raycasting (비월주사식 볼륨 광선 투사법)

  • Choi, Ei-Kyu;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.89-96
    • /
    • 2009
  • In general, the size of volume data is large since it has logical 3D structure so it takes long time to manipulate. Much work has been done to improve processing speed of volume data. In this paper, we propose a interlaced scanning volume rendering that reduce computation time by using temporal coherence with minimum loss of image quality. It renders a current frame by reusing information of previous frame. Conventional volume raycasting renders each frame by casting rays on every pixels. On the other hand, our methods divided an image into n-pixel blocks, then it casts a ray on a pixel of a block per each frames. Consequently, it generates an image by accumulating pixel values of previous n frames. The quality of rendered image of our method is better than that of simple screen space subsampling method since it uses afterimage effect of human cognitive system, and it is n-times faster that the previous one.

  • PDF

Tribological Behavior of Fe-based Bulk Amorphous Alloy in a Distilled Water Environment (수중환경에서 Fe계 벌크 비정질 합금의 트라이볼로지적 거동)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.295-302
    • /
    • 2014
  • The tribological behavior of an Fe-based bulk amorphous alloy while sliding against a AISI 304 disc is investigated using a unidirectional pin-on-disc type tribometer in dry and distilled water environments. The rod-shaped bulk pins are fabricated by suction casting. The crystallinities of the bulk amorphous alloys before and after the friction tests are determined by X-ray diffraction. The friction coefficient and specific wear rate of the amorphous pin in the water environment are found to be twice and thrice as much as in the dry environment at a low applied pressure, respectively. However, at a higher pressure, the friction coefficient and specific wear rate are 0.4 and 1.02 mg/(Nm/s), respectively, in the water environment. A microstructure analysis shows that the worn surface of the alloy is characterized by delamination from the smooth friction surface, and thus delamination is the main wear mechanism during the friction test in dry sliding environment. In contrast, brittle fracture morphologies are apparent on the friction surface formed in distilled water environment. For the sample tested at a lower sliding speed, the XPS data from the oxide layer are similar to those of the pure element with weak suboxide peaks. For higher sliding speeds, all the main sharp peaks representing the core level binding energies are shifted to the oxide region.