• Title/Summary/Keyword: Casting process

Search Result 1,136, Processing Time 0.024 seconds

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

Finite element analysis of casting processes considering molten-metal flow and solidification (용탕유동과 응고를 고려한 주조공정의 유한요소해석)

  • Yoon, Suck-Il;Kim, Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.110-122
    • /
    • 1996
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting process consists of mold filling and solidification. Both filling and solidication process were simulated simultaneously to investigate the effects of process variables and to predict the defect. At filling process, thermal coupling was especially considered to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simullation of the actual casting processes. At mold filling process, Lagragian-type finite element method with automatic remeshing scheme was used to find the material flow. A perturbation method with artificial viscosity is adopted to avoid numerical instability in low viscous fluid. At solidification process, enthalpy-based finite element method was used to solove the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidification time, position of solidus line, liquidus line and thermal residual stress are found. Through the study, the importance of combined analysis has been emphasized. Finite element tools developed in this study will be used process design of casting process and may be basic structure for total CAE system of castings which will be constructed afterward.

  • PDF

Steeraxle Casting Beam Design of Forklift Truck by Fatigue Life Analysis (피로수명해석에 의한 지게차용 후차축 주물빔 설계)

  • Park, Jin-Hong;Koo, Jae-Mean;Lee, Oh-Young;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1309-1315
    • /
    • 2011
  • The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.

A Study of Using FDM/ABS Parts as Wax-Pattern Substitutes in the Investment Casting Process (FDM 쾌속 조형기를 통해 만들어진 ABS 파트를 이용한 직접 정밀 주조에 대한 연구)

  • Choi, Doo-Sun;Shin, Bo-Sung;Kim, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.59-67
    • /
    • 1999
  • The lead time for new products is very limited in the current manufacturing processes, therefore the Rapid Prototyping process has been introduced and generally used in the industry. Fused Deposition Manufacturing (FDM) is one of the most common methods in this field. In the FDM process, the patterns are made of Wax of ABS and ABS shows better quality of the patterns. To date, the FDM/ABS patterns are used in investment casting for making silicon moulds to produce was patterns because it is very difficult to dewax FDM/ABS directly. The aim of this paper was to propose a feasibility of using FDM/ABS parts as wax-pattern substitutes in the investment casting process. The effects of casting conditions, such as pre-heat temperature and casting temperature, are provided. Comparisons with the conventional investment casting processes using the wax-patterns under the same prototype are made. Lead-time and saving cost are discussed in using FDM/ABS parts as was-pattern substitutes compared with the products from other rapid prototype systems.

  • PDF

Numerical and Experimental Studies on Thermal Strain Analysis of Al Alloy Casting Mold using Metal Foundry (금형주조기를 이용한 알루미늄 합금 금형의 수치해석적 열변형 해석과 실험에 관한 연구)

  • Oh, Yool-Kwon;Kim, Yong-Bum;Yoon, Hee-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2050-2054
    • /
    • 2007
  • This study numerically and experimentally investigated on thermal strain analysis of aluminum alloy casting mold using metal foundry. To predict the numerical result of thermal strain in Al alloy casting mold during the cooling process, it is performed the investigation of temperature distribution, stress and displacement based on the physical properties of Al alloy. In results of this study, Al alloy casting mold represented rapidly cooling graph during initial 20minutes after beginning cooling process, therefore value of stress and displacement is rapidly changed during initial 20minutes after beginning cooling process. In addition to, temperature distribution obtained by experiment confirmed corresponding pattern then compared numerical analysis with experiment. These results are distribute to make the effective and the high precision casting mold.

  • PDF

Microstructure and Mechanical Properties of Co-Cr-Mo alloy for CAD/CAM Applications fabricated by Powder Metallurgy Process (분말야금공법으로 제조된 CAD/CAM용 Co-Cr-Mo 합금의 미세조직 및 기계적 특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2015
  • Purpose: The aims of this study are compare with microstructure and mechanical properties of Co-Cr-Mo alloys fabricated by powder metallurgy(P/M) process and casting process respectively. Methods: Microstructure and micro-hardness were tested by SEM and Vickers Hardness Tester. The sintered specimen was produced by furnace-coolling after sintering, however the casting specimen were produced thru air-cooling and water-cooling after the casting. For observation of phase transformation during sintering, DSC analyzing was carried out. Results: Mean pore size of sintered Co-Cr-Mo alloy was $4.32{\mu}m$ and that of casting alloy was $1.63{\mu}m$. Hardness of sintered alloy was lower than water-quenched casting alloy. Conclusion: Proper sintering temperature of Co-Cr-Mo alloy was above $1,200^{\circ}C$ and pore size of casting specimen were finer than sintered specimen, but hardness were similar.

Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm (고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구)

  • Lee, Seungro;Lee, Seungcheol;Han, Dosuck;Kim, Naksoo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.521-527
    • /
    • 2021
  • This study presents a process management method for the detection of casting defects during in high-pressure die casting based on machine learning. The model predicts the defects of the next cycle by extracting the features appearing over the previous cycles. For design of the gearbox, the proposed model detects shrinkage defects with data from three cycles in advance with 98.9% accuracy and 96.8% recall rates.

A Case Study on Casting Layout Design of Automotive Oil Pan_DX2E Using Computer Simulation (유동해석을 이용한 자동차용 부품(오일팬_DX2E)의 주조방안설계에 대한 사례연구)

  • Kwong, Hongkyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.71-76
    • /
    • 2013
  • For a die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize the casting layout design of an automotive Oil Pan_DX2E, Computer Aided Engineering (CAE) simulation was performed with two layout designs by using the simulation software (AnyCasting). The simulation results were analyzed and compared carefully in order to apply them into the production die-casting mold. During the filling process with two models, internal porosities caused by air entrapments were predicted and also compared with the modification of the gate system and overflow. With the solidification analysis, internal porosities occurring during the solidification process were predicted and also compared with the modified gate system.

Applications of Semi-Solid Forming and its Problems (반용융 성형공정의 응용 및 문제점)

  • 강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

Effect of Partial Squeeze on the Quality of Casting Products in the Vacuum Die Casting (진공다이캐스팅시 국부스퀴즈 효과가 주조품질에 미치는 영향)

  • 김억수;김성준;이광학;문영훈
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.491-497
    • /
    • 1999
  • The effect of partial squeeze on the quality of casting products in the vacuum die casting was investigated to make defect free casting products with excellent mechanical properties. The partial squeeze and vacuum die casting process was industrially implemented in making reaction shaft support which was made of a hypereutectic Al-15%Si alloy. To combine squeezing and vacuum effects, the plunger injection system was designed and attached on the chill vent type vacuum machinery system. The combination of vacuum effect before injection and partial squeezing effect after injection resulted in defect free die casting products. The uniform distribution of fine eutectic and proeutectic Si obtained from trial process also provided excellent mechanical properties.

  • PDF