• Title/Summary/Keyword: Casting Speed

Search Result 215, Processing Time 0.031 seconds

Characteristics of bridge task in Korean coastal large trawler (우리나라 근해 대형트롤 어선의 선교업무 특성)

  • Kim, Min-Son;Shin, Hyeon-Ok;Lee, Ju-Hee;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.3
    • /
    • pp.301-310
    • /
    • 2013
  • To suggest a standard concerning with the arrangement of bridge equipment, the authors conducted the video observations with 3CCD (charge coupled device) cameras installed on the ceil of the bridge for monitoring the working activities of two bridge teams (the skipper/mate1 and the skipper/mate2) in a Korean coastal large trawler(gross tonnage: 139) for five days from July 30th. 2010 and analyzed of the data. Work elements coded by the work activities were input on the sheet of work analysis by the time unit of 1 sec according to the time occurred. A single work element among the work activities for every 5 minutes was denoted as the number of occurrence. The frequency of equipment usage was limited only in the usage of the equipment. In the case of the navigation and the towing net two ranks were integrated and analyzed. On the other hand, in the case of the casting net and the hauling net, two processes were integrated to as one and then analyzed separately as two ranks. As the results, 15 elements of work was carried out between two bridge teams for the observation; lookout, radar, GPS plotter, fish finder, net monitor, fishing deck, RPM indicator, rudder angle indicator, compass card, for maneuver; steering, ship speed control, trawl winch operation and external communications, paper works and others. It was found that the work load of the skipper per 5 minutes accordance with the navigation, the casting net, the towing net and the hauling net are 20.5 times, 11.9 times, 38.0 times and 9.5 times respectively, the mates are 65.2 times, 66.5 times, 85.7 times and 59.1 times respectively. The radar was shown the highest frequency of the equipment usage and the next was the fish finder, the GPS plotter and the external communications in the case of the navigation. In the case of the towing net the frequency of usage was high the ranking as the radar, the net monitor, the fish finder, the GPS plotter, the steering system and the external communications. In the case of the integrated process both of the casting and hauling net the trawl winch was shown the highest frequency to the skipper and the next was the GPS plotter and the radar, and the steering system was shown the highest frequency to the mate and the next was the radar, the ship speed control system, the GPS plotter, the net monitor and the fish finder.

Redesigning nozzle propeller of trawl vessel for improving towing speed (트롤어선의 예망속도 향상을 위한 추진기 구조개선)

  • Hong, Jin-Keun;Kang, Il-Kwon;Kim, Hyung-Seok;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.476-486
    • /
    • 2010
  • Fishing efficiency of a trawl vessel can be enhanced by increasing the swept area per unit time, which can be attained either by increasing the mouth size of the net, or by increasing the towing speed. To improve fishing and fuel efficiency of trawl vessels targeting fishes of greater mobility, in which the towing speed is more critical in determining fishing efficiency, we conducted a series of model tests to evaluate the performance of the newly-designed nozzle propeller before installing it in a trawl vessel to verify its towing speed and fuel efficiency in the sea. By conducting further model tests in the experimental basin, we redesigned the propeller of stern trawler to improve the resistance and propulsion performance. Through actual fishing operations, we evaluated the improvement in fuel and fishing efficiency by installing the new nozzle propeller. The trawling speed increased by 0.6kts at the same engine power (RPM), while the engine margin increased by more than 20%. The increased towing speed by installing the redesigned propeller is expected to enhance fishing performance through increasing the number of hauling- and casting operations per unit times, while shortening the towing duration. Analysis of the Catch-Per-Unit-Effort (CPUE) data indicated that the mean CPUE of trawl fishery increased from 3.04kg/m in year 2007 to 6.15kg/m in year 2008, confirming enhanced fishing efficiency by adopting the redesigned propeller.

Effects of Process Conditions on Electrode Patterning by Screen Printing Method (스크린 인쇄법의 공정 조건이 전극 패턴 균일성에 미치는 영향)

  • Lee, Na-Young;Kim, Dong-Chul;Yeo, Dong-Hun;Lee, Joo-Sung;Yoon, Sang Ok;Shin, Hyo-Soon;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.355-359
    • /
    • 2020
  • In this study, image analysis and surface roughness measurements using an optical microscope are presented as a method to quantitatively evaluate the results of screen printing. Using this method, the squeegee speed, which is the printing process condition, and the printability of the electrode according to the screen mesh were evaluated. Increasing the squeegee speed in the printing process acts as a process element that increases the line width precision of the printed electrode and lowers the surface roughness of the printed surface. Furthermore, the edge roughness, which indicates the clarity of printing, was not significantly affected by the speed of the squeegee during printing. The print thickness increases in proportion to the squeegee speed, but is largely dependent on the screen thickness.

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

Measurement of the intrinsic speed of sound in a hot melt ceramic slurry for 3D rapid prototyping with inkjet technology (3차원 잉크젯 쾌속 조형법을 위한 세라믹 상변화 잉크의 음속측정)

  • Shin, Dong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.892-898
    • /
    • 2008
  • 3D rapid prototyping is the manufacturing technology to fabricate a prototype with the data stored in a computer, which differs from conventional casting technology in terms of an additive process. Various 3D rapid prototyping techniques such as stereolithograpy. fused deposition modeling. selective laser sintering, laminated object manufacturing have been developed but among them, 3D inkjet printing has a unique feature that materials could be jetted to directly form the body of a prototype, which could be a finished product functionally and structurally. However, this needs ink with a high solid content, which tends to increase the dynamic viscosity of ink. The increase of ink viscositytends to restrict the jettable range of ink and hence the jetting conditions should be optimized. The intrinsic speed of sound in a hot melt ink with ceramic nanoparticles dispersed is one of key components to determine the jettable range of ink. In this paper, the way to measure the intrinsic speed of sound in a hot melt ceramic ink is proposed and its influence on the jetting condition is discussed.

Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC (PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계)

  • Bae, Su-Hyeon;Kim, Seon-Ho;Yu, Seon-Guk
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.189-198
    • /
    • 1998
  • 3D medical image reconstruction techniques are useful to figure out complex 3D structures from the set of 2D sections. In the paper, 3D medical image reconstruction system is constructed under PC environment and programmed based on modular programming by using Visual C++ 4.2. The whole procedures are composed of data preparation, gradient estimation, classification, shading, transformation and ray-casting & compositing. Three speed optimization techniques are used for accelerating 3D medical image reconstruction technique. One is to reduce the rays when cast rays to reconstruct 3D medical image, another is to reduce the voxels to be calculated and the other is to apply early ray termination. To implement 3D medical image reconstruction system based on PC, speed optimization techniques are experimented and applied.

  • PDF

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.

The Plastic Cracking Properties of Fly Ash Concrete with Various Curing Conditions (양생조건에 따른 플라이애쉬 콘크리트의 소성수축균열 특성)

  • Nam, Jae-Hyun;Park, Jong-Hwa
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.91-98
    • /
    • 2007
  • In this study, the property and plastic cracking pattern of concrete were compared and analyzed with the replacement ratio of fly ash 0, 5, 10, 15, 20% by cement weight. And curing conditions of concrete were given variously such as indoors(with wind speed as 0, 300, 500m/min), outdoors and chamber. The hydration temperature had a tendency to decrease as the replacement ratio of fly ash increased, and in the case of the wind speed 0m/min, it was showed that the moment that the amount of evaporation of water from surface of reference concrete was more than the volume of bleeding was 90 min since casting concrete. The time that the crack initiated had a tendency to be more quickly as the replacement ratio of fly ash increased. The number, length, width and area of crack in the indoor curing, exposed outdoor curing, enclosed outdoor curing had a tendency to decrease as the replacement ratio of fly ash increased. The crack had a tendency to decrease in sequence of exposed outdoor, enclosed outdoor curing, indoors curing. The outbreak of cracking by the change of temperature and humidity was affected by relative humidity more than temperature and the cracking had a tendency to increase as relative humidity lowered.

Min-Max Octree Generation Using CUDA (CUDA를 이용한 최대-최소 8진트리 생성 기법)

  • Lim, Jong-Hyeon;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.191-196
    • /
    • 2009
  • Volume rendering is a method which extracts meaningful information from volume data and visualizes those information. In general, since the size of volume data gets larger, it is very important to devise acceleration methods for interactive rendering speed. Min-max octree is data structure for high-speed volume rendering, however, its creation time becomes long as the data size increases. In this paper, we propose acceleration method of min-max octree generation using CUDA. Firstly, we convert one-dimensional array from volume data using space filling curve. Then we make min-max octree structures from the sequential array and apply them to acceleration of volume ray casting.

  • PDF

Thermo-mechanical behavior of prestressed concrete box girder at hydration age

  • Zhang, Gang;Zhu, Meichun;He, Shuanhai;Hou, Wei
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • Excessively elevated temperature can lead to cracks in prestressed concrete (PC) continuous bridge with box girder on the pier top at cement hydration age. This paper presents a case study for evaluating the behavior of PC box girder during the early hydration age using a two-stage computational model, in the form of computer program ANSYS, namely, 3-D temperature evaluation and determination of mechanical response in PC box girders. A numerical model considering time-dependent wind speed and ambient temperature in ANSYS for tracing the thermal and mechanical response of box girder is developed. The predicted results were compared to show good agreement with the measured data from the PC box girder of the Zhaoshi Bridge in China. Then, based on the validated numerical model three parameters were incorporated to analyze the evolution of the temperature and stress within box girder caused by cement hydration heat. The results of case study indicate that the wind speed can change the degradation history of temperature and stress and reduce peak value of them. The initial casting temperature of concrete is the most significant parameter which controls cracking of PC box girder on pier top at cement hydration age. Increasing the curing temperature is detrimental to prevent cracking.