• Title/Summary/Keyword: Casting Process

Search Result 1,129, Processing Time 0.024 seconds

Inverse Heat Transfer Analysis at the Mold/Casting Interface in the Aluminum Alloy Casting Process with Precision Metal Mold (정밀금형 알루미늄 합금주조공정시 주물/금형 접촉면에서의 Inverse 열전달해석에 관한 연구)

  • Moon, Su-Dong;Kang, Shin-Ill
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.246-253
    • /
    • 1998
  • Precision metal mold casting process is a casting method manufacturing mechanical elements with high precision, having heavy/light alloys as casting materials and using permanent mold. To improve dimensional accuracy and the final mechanical properties of the castings, the solidification speed and the cooling rate of the casting should be controlled with the optimum mold cooling system, and moreover, to obtain more accurate control of the whole process interfacial heat transfer characteristic at the mold/casting interface must be studied in advance. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling system was designed and the temperature histories at points inside the metal mold were measured during the casting process. The heat transfer phenomena at the mold/casting interface was characterized by the heat flux between solidifying casting metal and metal mold, and the heat flux history was obtained using inverse heat conduction method. The effect of mold cooling condition upon the heat flux profile was examined, and the analysis shows that the heat flux value has its maximum at the beginning of the process.

  • PDF

Research on the Mold Design of Motor Housing using Die Casting Process (다이캐스팅에 의한 모터 하우징의 금형설계에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.36-41
    • /
    • 2015
  • In this paper, research on the mold design of motor housing produced by the HPDC process was conducted using computer simulations and experiments. Recently, automobile parts have been required to be light and have high strength. The die casting process was used to manufacture automotive motor housings. In the die casting process, the control of casting defects is very important. However, it has usually depended on the experience of the foundry engineer. For the analysis of the manufacturing process of motor housing, the finite element method is applied. Through the simulations using commercial software, the filling pattern and product defects could be confirmed. The analysis results obtained from the filling behavior of the casting process agreed with the experimental results. The computer simulation results of filling behavior were reflected in the optimal mold design of motor housing.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.

Data Management and Analysis in Foundry Industry (1) (주조공정 데이터 처리 및 분석 (1))

  • Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.42 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the present paper, the data management of casting processes has been discussed. In order to construct a smart factory in the foundry industry, understanding of the whole casting processes has to be in the first place. Casting process data can be obtained at the kiosk operated by casting engineers and data acquired by sensors in the foundry facility. However, preprocessing of the casting process data must be carried out in order to analyze the casting process by the data. Techniques and some examples for data preprocessing in the foundry was introduced.

The Selection of Optimal Process Variables in UV-Vacuum Casting (UV-Vaccum Casting의 최적 공정 변수 선정)

  • Kim, T. W.;Woo, S. M.;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.453-456
    • /
    • 2000
  • This paper presents experimental results on selecting optimal process parameters for UV-Vaccum casting. The UV-Vacuum casting is a relatively new process that allows very rapid mold preparation and part duplication via UV curing. Effect of various process variables such as pressure and temperature on mold strength and part accuracy was evaluated by using Taguchi method.

  • PDF

Analysis and Design of Alternator Housing for Automobile (자동차용 알터네이터 하우징의 성형해석 및 금형설계)

  • 조영석;박종배;한규택;정영득
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.3-7
    • /
    • 2002
  • The die casting process was used to manufacture a alternator housing for automobile. Specially automobile parts were required light and hight strength. Therefore simulation have been carried out die casting process of the alternator housing. In this paper, we investigated about characteristics of the die casted alternator housing the HPDC(High Pressure Die Casting) process. Also we designed the die casting die with the simulation results of the alternator housing. The MAGMAsoft and Auto-CAD was used as computer simulation and design code and used material was ADC12(Aluminum Die Casting Alloy). We present the results of filling behavior and design of die process of the alternator housing cast. The result obtained about filling behavior and design of die of the cast showed good agreement with test result.

  • PDF

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.

Rapid Tooling of Aluminum Mold Using Slurry Casting and Vacuum Sealed Casting (슬러리 캐스팅과 흡인주조기술을 이용한 알루미늄 금형의 쾌속제작)

  • Jeong, Hae-Do;Bae, Won-Byung
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.277-282
    • /
    • 2000
  • The RP&M (Rapid prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. In this paper, RP&M is applied to a casting process. A casting process has a merit of being able to reflect complicated shapes at one time. But it has not been applied to the precision industry because of bad quality on surface. So we will improve characteristics of aluminum casting process using vacuum sealed casting process and porous ceramic mold which is made by slurry casting process.

  • PDF

Development of High Quality Die Casting Technology with Function to Purify Molten Metal (용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발)

  • Hatano, Tomoyuki;Takagi, Hiromi;Inagaki, Mitsugi
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Jang C. W.;Kim S. K.;Han S. H.;Seo Y. K.;Kang C. G.;Lee J. H.;Park J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF