• Title/Summary/Keyword: Casting Mold

Search Result 465, Processing Time 0.023 seconds

Casting Conditions and Solidification Characteristics of Sn-Zn Alloys (Sn-Zn합금의 주조조건과 응고특성)

  • Song, Tae-Seok;Kim, Myung-Han;Jo, Hyung-Ho;Ji, Tae-Gu
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.570-577
    • /
    • 1998
  • An investigation has been conducted to describe solidification characteristics in Sn-Zn binary system and Sn-Zn-Ag ternary system added by Ag produced by the continuous casting process using heated mold as a basic study for developing Pb-free solder materials. To obtain the continuous casting rods with mirror surface and near net shape at higher casting speed, water flow rates must be increased and mold temperature must be lowered. However, surface tearing in the casting rods occured at lower continuous casting speed while break out occured at higher continuous casting speed even if optimum conditions such as water flow rate and heated mold temperature are determined. Primary ${\alpha}Sn$ and eutectic structure in unidirectioally solidified Sn-Zn alloys were finer with increased casting speed. But, directionality may not be expected for primary Zn in hypereutectic Sn-Zn alloy. It was found that the addition of $0.2{\sim}0.8%$ Ag promoted the growth of primary ${\alpha}Sn$ dendrites. The changes of tensile strength and elongation in Sn-Zn binary alloys were not observed while the increase of tensile strength and the decrease of elongation in Sn-Zn-Ag ternary alloys were observed with increased casting speed.

  • PDF

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products (환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향)

  • Park, Kyeong-Seob;Kang, Shin-Wook;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.

Control of the Casting Defects in the Gravity Tilt Pour Casting Process (경동식 중력주조법에 의한 주조결함 제어)

  • Yeom, Ki-Dong;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.262-270
    • /
    • 1998
  • Gravity tilt pour casting can effectively guarantee the reduction of various casting defects by controlling the rotation speed and the tilting angle of the mold during tilt pouring. The relationship between casting process parameters and the soundness of castings has been investigated in order to determine the optimum process variables in the gravity tilt pour casting process. In order to evaluate the effect of rotation speed on mold filling patterns, a video camera was employed to visualize the in-situ fluid flow behavior of the molten metal, and the relevant fluid velocity was also estimated. X-ray and mechanical tests were also performed to evaluate the effect of fluid velocity on casting quality. With the rotation speed lower than 0.5 r.p.m., which is nearly corresponding to the critical velocity of stability in the fluid flow, sound castings were obtained without having any casting defects. It can be concluded that the gravity tilt pour casting process is an effective process for manufacturing sound casting products with enhanced physical and mechanical properties.

  • PDF

The Effect of Casting Conditions on Shrinkage and Porosity of A356.2 Alloys (A356.2 합금의 수축과 기공에 미치는 주조 조건의 영향)

  • Jeon, Gyu-Tae;Kim, Ki-Young;Kim, Suk-Jun
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.193-198
    • /
    • 2017
  • In this study, volumes of shrinkage and porosity of A356.2 alloys during casting were analyzed as a function of melt temperature, pouring diameter, mold temperature, and Sr content. The temperature of the melt barely affected the shrinkage and porosity formation. The pouring diameter determined the pouring rate, and it was proportional to the shrinkage, yet no relationships with the density of porosity were observed. When the mold was heated at $400^{\circ}C$, shrinkage and porosity in the alloy increased above the one in the mold without heating. However, the mold without heating experienced interior shrinkage and the porosity was mainly distributed near interior shrinkage. The addition of Sr to the melt resulted in more shrinkage and less porosity.

DEVELOPMENT OF A COMPENSATORY CONTROL SYSTEMS TO REDUCE HYSTERESIS OF STEEL LEVEL CONTROL EQUIPMENT IN CONTINUOUS CASTING MOLD

  • Iwanaga, T.;Kosakai, I.;Ebina, K.;Itashiki, M.;Furukawa, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1910-1914
    • /
    • 1991
  • In the continuous casting process, mold level fluctuation Is the major cause of the surface and sub-surface defects. In the No.3 bloom continuous caster at Kobe Works, we ensured that the major cause of mold level fluctuation was mechanical hysteresis which existed in the driving system of mold level control. Moreover, we found out that it was possible to greatly Improve the stability of mold level by estimating this mechanical hysteresis and compensating It on-line. As a result of applying a new level control system based on this method, we got accurate control over good stability.

  • PDF

Influence of the Mold Temperature on the Castability of CP Ti (주형온도가 CP Ti의 주조성에 미치는 영향)

  • Jung, Jong-Hyun;Joo, Kyu-Ji;Go, Eun-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The purpose of this study was to evaluate the titanium castability with a spin type casting machine(TiCast, Super R, Selec, Osaka. Japan). We tested phosphate bonded investment "Rematitan$^{(R)}$Plus(Dentaurum, Inc., Pforzheim, Germany)"of mesh grid pattern and plate pattern. Four different mold temperatures(room temperature, 200$^{\circ}C$, 400$^{\circ}C$ and 600$^{\circ}C$) were prepared for the present study. In mesh grid pattern with spruing of $\varphi$0.88㎜ dimeter, when the mold temperature increased, high percentage of castability was gained. Mold temperature showed a highly significant(p<0.05) correlation on the castability, In plate pattern, the higher the mold temperature during casting, the greater the adhesive phenomenon between Ti surface and the investment.

  • PDF

A study on the phase change in the cylindrical mold by the enthalpy method (엔탈피법을 이용한 원통형 몰드내에서의 상변화과정에 관한 연구)

  • 여문수;최상경;김문철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.891-897
    • /
    • 1999
  • The heat transfer characteristics at the interface between the mold and the casting is one of the major factors for the solidification speed which determines the casting structures. The thermal resistance exists due to air gap formation at the mold/casting interface during the freezing process. In this study one dimensional Stefan problem with the air-gap resistance in the cylindrical mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method which is convenient in solving the Stefan problem with mushy zone. The present results agreed very well with those of previous papers. The effects of major parameters such as thermal conductivity, heat transfer coefficient of mold, on the thermal characteristics are investigated.

  • PDF

In-situ Synthesis and Investment Casting of Titanium Matrix (TiC+TiB) Hybrid Composites (Ti기 (TiC+TiB) 하이브리드 복합재료 반응생성합성 및 정밀주조)

  • Sung, Si-Young;Park, Keun-Chang;Lee, Sang-Hwa;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape forming of the titanium matrix (TiC+TiB) hybrid composites using a casting route. From the scanning electron microscopy, electron probe micro-analyzer, X-ray diffraction and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid titanium matrix composites could be obtained in-situ by the conventional melting and casting route between titanium and $B_4C$. No melt-mold reaction occurred between the titanium matrix (TiC+TiB) hybrid composites and the SKK mold, since the mold is consisted with interstitial and substitutional metal-mold reaction products. Not only the sound in-situ synthesis but also the economic net-shape forming of the titanium matrix (TiC+TiB) hybrid composites could be possible by the conventional casting route.