• 제목/요약/키워드: Casting Beam

검색결과 56건 처리시간 0.026초

피로수명해석에 의한 지게차용 후차축 주물빔 설계 (Steeraxle Casting Beam Design of Forklift Truck by Fatigue Life Analysis)

  • 박진홍;구재민;이오영;석창성
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1309-1315
    • /
    • 2011
  • The design process for obtaining the reliable steeraxle casting beam of fork lift truck is studied in this paper, as the casting beam is major component of steeraxle which has a steering function at driving. In this study, the driving mode and damage pattern of casting beam which could be occurred from the customer site were analyzed and it established the design process to predict the fatigue life by FEA(Finite Element Analysis) so that the reliability of steeraxle casting beam could be verified at DVT(Design Validation Test) mode. This paper provides guidance on the process of designing the reliable steeraxle casting beam at the initial design stage and also, provides guidance on the process of solving the problem when the failure is occurred in the field.

Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams

  • Ibrahim, Omar Mohamed Omar;Heniegal, Ashraf Mohamed;Ibrahim, Khamis Gamal;Agwa, Ibrahim Saad
    • Advances in concrete construction
    • /
    • 제10권5호
    • /
    • pp.455-462
    • /
    • 2020
  • This study investigated the effect of horizontal casting joints on the mechanical properties and structural behavior of sustainable self-compacting reinforced concrete beams (SCRCB). The experimental research consisted of two stages. The first stage used four types of concrete mixtures which were produced to indicate the effects of cement replaced with cement waste at 0%, 5%, 10%, and 15% by weight of cement content on fresh concrete properties of self-compacting concrete (SCC) such as, passing ability, filling ability, and segregation resistance. In addition, mechanical properties such as compressive, tensile, and flexural strength were also studied. The second stage selected the best mixture from the first stage and studied the effect of horizontal casting joints on the structural behavior of sustainable SCRCBs. The effect of horizontal casting joints on the mechanical properties and structural behavior were at the 25%, 50%, 75%, and 100% of sample height. Load deflection, failure mode, and theoretical analysis were studied. Results indicated that the incorporation of replacement with cement waste by 5% to 10% led to economic and environmental advantages, and the results were acceptable for fresh and mechanical properties. The results indicated that delaying the time for casting the second layer and increasing the cement waste in concrete mixtures had a great effect on the mechanical properties of SCC. The ultimate load capacity of horizontal casting joints reinforced concrete beams slightly decreased compared with the control beam. The maximum deflection of casting joint beams with 75% of samples height is similar with the control beam. The experimental results of reinforced concrete beams were substantially acceptable with the theoretical results. The failure modes obtained the best forced casting joint on the structural behavior at 50% height of casting in the beam.

SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구 (Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete)

  • 배규웅;신상민
    • 한국건축시공학회지
    • /
    • 제21권6호
    • /
    • pp.605-615
    • /
    • 2021
  • 최근 공사 기간 단축과 인건비 절감을 위해 거푸집을 탈형하지 않는 비탈형 보거푸집의 필요성이 RC구조물에서 강조 되고 있다. 본 연구의 목적은 새로 개발된 비탈형 보 거푸집인 SY Beam의 콘크리트 타설시 변형성능을 평가하는 것이다. SY Beam의 표준 단면 형상은 MIDAS GEN 프로그램을 통해, 다양한 두께의 강판 데크 구조 모델링을 수행하여 결정하였다. 그 결과, SY Beam의 단면치수는 폭과 높이가 각각 400mm와 450mm로 결정하였다. 강판두께 0.8, 1.0, 1.2mm를 변수로 하여 총 3 개의 SY Beam 실험체를 제작하였다. 실제 현장에서 콘크리트를 타설할 때 작용하는 하중 조건을 반영하였다. 콘크리트 타설시 SY Beam 단면의 수직 및 수평 변위를 측정하였다. 그 결과, 수직 변위는 두께가 증가할수록 감소하는 경향을 보였다. 수직변위와 수평변위를 모두 고려할 때, 강판두께 1.2mm의 경우가 가장 안전하고 즉시 현장 적용이 가능하다. 향후, 제작성, 시공성, 경제성을 확보하기 위해 최적의 강판두께를 도출하여야 하며, 1.05, 1.1, 1.15mm 에 대한 추가의 해석 및 실험연구가 필요하다.

An experimental study of the mechanical performance of different types of girdling beams used to elevate bridges

  • Fangyuan Li;Wenhao Li;Peifeng Wu
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.563-571
    • /
    • 2023
  • Girdling underpinning joints are key areas of concern for the pier-cutting bridge-lifting process. In this study, five specimens of an underpinning joint were prepared by varying the cross-sectional shape of the respective column, the process used to treat the beam-column interface (BCI), and the casting process. These specimens were subsequently analyzed through static failure tests. The BCI was found to be the weakest area of the joint, and the specimens containing a BCI underwent punching shear failure. The top of the girdling beam (GB) was subjected to a circumferential tensile force during slippage failure. Compared to the specimens with a smooth BCI, the specimens subjected to chiseling exhibited more pronounced circumferential compression at the BCI, which in turn considerably increased the shear capacity of the BCI and the ductility of the structure. The GB for the specimens containing a column with a circular cross-section exhibited better shear mechanical properties than the GB of other specimens. The BCI in specimens containing a column with a circular cross-section was more ductile during failure than that in specimens containing a column with a square cross-section.

Experimental Cyclic Behavior of Precast Hybrid Beam-Column Connections with Welded Components

  • Girgin, Sadik Can;Misir, Ibrahim Serkan;Kahraman, Serap
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.229-245
    • /
    • 2017
  • Post-earthquake observations revealed that seismic performance of beam-column connections in precast concrete structures affect the overall response extensively. Seismic design of precast reinforced concrete structures requires improved beam-column connections to transfer reversed load effects between structural elements. In Turkey, hybrid beam-column connections with welded components have been applied extensively in precast concrete industry for decades. Beam bottom longitudinal rebars are welded to beam end plates while top longitudinal rebars are placed to designated gaps in joint panels before casting of topping concrete in this type of connections. The paper presents the major findings of an experimental test programme including one monolithic and five precast hybrid half scale specimens representing interior beam-column connections of a moment frame of high ductility level. The required welding area between beam bottom longitudinal rebars and beam-end plates were calculated based on welding coefficients considered as a test parameter. It is observed that the maximum strain developed in the beam bottom flexural reinforcement plays an important role in the overall behavior of the connections. Two additional specimens which include unbonded lengths on the longitudinal rebars to reduce that strain demands were also tested. Strength, stiffness and energy dissipation characteristics of test specimens were investigated with respect to test variables. Seismic performances of test specimens were evaluated by obtaining damage indices.

원심 주조 스텐레스 강에서의 이론적 모델을 통한 Beam Skewing 영향 고찰 (A study on the effect of ultrasonic beam skewing based on theoretical model approach in CCSS)

  • 이삼래;임형택;이윤상
    • 비파괴검사학회지
    • /
    • 제10권1호
    • /
    • pp.24-28
    • /
    • 1990
  • Centrifugally Cast Stainless Steel generally shows similar structure to the weld in austenitic stainless steel in the point of casting. When examining this material ultrasonically, the beam does not generally propagate straightforward but rather deviates from its original direction and this phenomenon called skewing is originally caused by anisotropic material. In order to calculate the beam skewing effect theoretically, work has been performed based on a model approach which has regarded material itself as having been composed of multi-layered columnar dendrite structure and the result was compared with the one from experiment. The result from both theory and experiment showed good correlation and ultrasonic beam showed the least skewing with around 45 degree incident angle.

  • PDF

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

An Adaptive Beam Tracing for Visual Simulation of Ray Propagation in Wireless Communications Systems

  • Makino, Mitsunori;Xiaoyi, Cao;Shirai, Hiroshi;Shinoda, Shoji;Kawakita, Kenji
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.54-57
    • /
    • 2002
  • In this paper, an adaptive beam tracing method with revised subdivision technique is proposed, in which the beam is generated by a set of three rays. According to reflection and/or refraction of the rays on the buildings and/or ground, additional rays are generated adaptively and the beam is subdivided efficiently and automatically. After generation of the set of beams, we transform the electromagnetic wave propagation data into volume data. Then one can visualize the data of propagation with reflection, refraction and interaction in full three dimensional space at any viewpoint by the so-called ray casting algorithm, which is one of the most useful methods in compute. graphics(CG).

  • PDF

훅트강섬유보강철근콘크리트보의 휨거동에 관한 실험적 연구 (Experimental Study on the Flexural Behavior of Reinforced Hooked Steel Fibrous Concrete Beam)

  • 심종성;이차돈;김규선;오홍섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.311-318
    • /
    • 1995
  • Increases in strength and ductilities of steel fiber reinforced concrete(SFRC) under direct tension and compression result in improvements of flexural behavior of reinforced steel fibrous concrete beam(RSFCB) Use of hooked steel fibers in stead of round steel fibers enhances futher the structural porperties of a beam due to their greater mechanical bond resistance compared to that of round steel fibers. Flexural strength, initial stiffness ductility and failure mechani는 of RSFCB are dependent upon material and structural parameters and among which are the volume fraction of fibers, reinforcement ratio, and casting depth of SFRC in a beam section. The flexural behavior of RSFCB's are examined experimentally in this study and some conclusions are made regarding those effects of main material and structural parameters on the overall behavior of RSFCB.

  • PDF

PSC보의 박스화 보강방법의 신뢰성해석 (A Reliability Analysis on the To-Box Reinforcement Method of PSC Beam Bridges)

  • 방명석
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.94-100
    • /
    • 2006
  • The goal of this study is to show the way to increase the safety of deteriorated PSC beam bridges by the to-box reinforcing method. This method is to change the open girder section into the closed box section by connecting bottom flanges of neighboring PSC girders with the precast panels embedding PS tendons at the anchor block. The box section is composed of three concrete members with different casting ages, RC slab, PSC beam, precast panel. This different aging requires a time-dependent analysis considering construction sequences. Reliability index and failure probability are produced by the AFOSM reliability analysis. Transversely five schemes and longitudinally two schemes are considered. The full reinforcing scheme, transversely and longitudinally, shows the highest reliability index, but it requires more cost for retrofit. The partial reinforcing scheme 4, 4-1 are recommended in this study as the economically best scheme.