• 제목/요약/키워드: Casting Al alloy

검색결과 370건 처리시간 0.029초

주조/단조 기술을 이용한 알루미늄 타이로드 엔드 제조에 관한 연구 (A Study on the Manufacture of Aluminum Tie-Rod End by Casting/Forging Process)

  • 김효량;서명규;유민수;배원병
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.180-185
    • /
    • 2002
  • Aluminum casting/forging process is used to produce an aluminum tie-rod end for the steering system of automobiles. Firstly, casting experiments were carried out to get a good preform for forging the tie-rod end. In the casting experiment, the effects of additives, Ti+B, Zr, Sr, and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. And a finite element analysis was performed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum tie-rod end by using the above cast preform. In the casting experiments, when 0.2% Ti+B and 0.25% Zr were simultaneously added into molten Al-Si alloy, the highest values of tensile strength and elongation of the cast preform were obtained. When 0.04% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform. The highest hardness was obtained when 0.2% Mg was added. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The hardness of a cast/forged product using designed preform was superior to that of required specification.

주조용 Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe 합금의 결정립 미세화와 주조특성에 미치는 Ti, B, Zr 첨가원소의 영향 (Effect of Ti, B, Zr Elements on Grain Refinement and Castability of Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe Casting Alloy)

  • 김헌주;박수민
    • 한국주조공학회지
    • /
    • 제35권5호
    • /
    • pp.120-127
    • /
    • 2015
  • The effects of Ti, B and Zr on grain refinement and castability were investigated in Al-4wt%Mg-0.9wt%Si-0.3wt%Mn-0.15wt%Fe alloy. Measurement of cooling curve and micro-structure observation were performed to analyze the effects of the addition of minor elements Ti, B and Zr during solidification. The prominence of effect on grain refinement was in increasing order for Ti, Zr and B element. Fine grain size and an increase of the crystallization temperature for ${\alpha}$-Al solution were evident as the amount of addition elements increased in this study. Addition of 0.15wt% Ti was most effective for grain refinement, and the resulting grain size of ${\alpha}$-Al solution for shell mold and steel mold were $72.3{\mu}m$ and $23.5{\mu}m$, respectively. Fluidity and shrinkage tests were perform to evaluate the castability of the alloy. Maximum fluidity length and minimum ratio of micro shrinkage were recorded for 0.15wt% Ti addition due to the effect of the finest grain size.

AS52+Sr/Al18B4O33 복합재료 계면반응 및 기계적 특성에 미치는 시효 열처리의 영향 (Effect of an Aging Treatment on the Interfacial Reaction and Mechanical Properties of an AS52+Sr/Al18B4O33 Magnesium Matrix Composite)

  • 박용하;박용호;박익민;조경목
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.957-963
    • /
    • 2010
  • The aging behavior of aluminum borate whisker ($Al_{18}B_4O_{33}$) reinforced AS52+Sr magnesium matrix composites was investigated with Vickers hardness measurements, bending tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experimental results showed that aging is accelerated in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with an unreinforced AS52+Sr alloy. The hardness of the alloy and composite increases monotonically as a function of the aging time before reaching its peak hardness and then gradually decreases. The composite reaches its peak hardness in 10 h, whereas the matrix alloy requires 30h, indicating accelerated age-hardening in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with the unreinforced AS52+Sr alloy at $170^{\circ}C$. The interfacial reaction of $AS52+Sr/Al_{18}B_4O_{33}$ magnesium matrix composite is considered to play a dominant role in the strengthening mechanism, ultimately affecting the mechanical properties of the composite.

상평통보 주조와 복원기술연구 (Study on the Casting Technology and Restoration of "Sangpyong Tongbo")

  • 윤용현;조남철;정영상;임인호
    • 헤리티지:역사와 과학
    • /
    • 제47권4호
    • /
    • pp.224-243
    • /
    • 2014
  • "용재총화", "천공개물", "The Korean Review"등의 고문헌을 통하여 청동유물 제작에 사용된 소재, 거푸집, 합금 등의 주조기술을 확인하였다. 상평통보 복원 주조실험은 "The Korean Review"를 기초한 주물사주조법을 적용하여 황동, 청동 소재의 모전판(母錢版, 鑄錢版)을 제작하였다. 거푸집은 본기(本器)틀과 목틀, 주물사로 구성되는데 본기틀은 주물사를 담는 바깥 틀의 재질에 따라 목틀과 쇠틀로 나뉘며, 주물사는 옅은 황색의 전북 이리사를 사용했다. 주물사주조법으로 상평통보 복원에 사용된 모합금 성분비를 살펴보면, 황동은 "The Korean Review" 기록의 성분비인 Cu 60%, Zn 30%, Pb 10%를 근거로 삼았으며, 실제 복원에는 합금 시 아연과 납이 기화되어 성분비율이 감소될 것을 감안하여 Cu 60%, Zn 35%, Pb 15%로 설정하였다. 청동은 청주시 신봉동유적 출토 해동 통보의 성분비인 Cu 80%, Sn 6%, Pb 14%를 근거로 하였으며, 실제 복원에는 Cu 80%, Sn 11%, Pb 19%로 설정하였다. 주물사주조법에 의한 상평통보 복원은 목재로 부전(父錢)을 먼저 제작하고 목틀과 본기쇠틀을 이용한 거푸집 만들기, 합금, 주조하기, 모전 만들기 등의 과정으로 모전판(母錢版, 鑄錢版)을 복원하였다. 복원된 상평통보의 모합금과 1차 주조, 2차 주조물의 성분분석을 실시한 결과 청동 모합금은 구리는 약 5%가 증가하고 납은 약 4% 손실되었으며, 황동 모합금은 구리는 약 5%가 증가하고 납은 약 4%, 아연은 12%은 감소하여 아연의 손실률이 큰 것을 알 수 있다. 1차, 2차 모전판의 EDS 분석결과 청동 모전판은 1차에 비해 2차에서 납이, 황동 모전판은 아연이 낮게 나온 것은 1차 모전판의 용융과정에서 납과 아연이 기화된 결과로 보인다. 또한 청동과 황동의 모합금과 1차, 2차 주전판의 미세조직에서는 ${\alpha}$상과 크고 작은 납 편석물이 보이고, 황동 모전판에서만 불순물로 보이는 Al, Si 등이 확인되었다.

Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화 (Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy)

  • 나상수;김용호;손현택;이성희
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Al-0.11 Fe계 합금에서의 Zr원소 미세첨가에 따른 연속주조재 및 압연재의 특성 (The Effect of Zr element on the Properties of Continuous Casting and Rolling Materials for Al-0.11 wt.%Fe Alloy)

  • 김병걸;김상수;김성규;김한얼;;김지상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.519-520
    • /
    • 2007
  • In order to develop non-heated STAl(super thermal resistant Aluminum alloy) for ampacity gain conductor, the systematic research was carried out. Especially, the effect of a very small amount of Zr element in EC grade Al ingot on mechanical and electrical properties was our priority. As a result, it was found that the strength and recrystallization temperature of designed alloy was gradually increased with Zr addition up to 0.3wt.%. However, the electric conductivity showed no drastic change. The tensile strength and recrystalliztion temperature, $17.75\;kgf/mm^2$ and $420^{\circ}C$, was obtained at 0.3 wt.% Zr addition, respectively.

  • PDF

A356 알루미늄 합금 슈퍼차저 하우징의 미세조직과 기계적 성질에 미치는 열처리의 영향 (Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Gravity Cast Superchargers Housing Using A356 Aluminum Alloy)

  • 김대환;반근호;성봉학;조복환;엄정필;박성기;임수근
    • 한국주조공학회지
    • /
    • 제32권5호
    • /
    • pp.231-240
    • /
    • 2012
  • In present study, the effect of heat treatment on the microstructure and mechanical properties of the gravity cast superchargers housing using A356 alloy were investigated. In order to identify the characteristics of superchagers housing casting with heat treatment, Vickers hardness test, electrical conductivity test, opical and scanning electron microscopy were performed. And also, to investigate their mechanical properties, the T6 treated superchagers housing casting in optimum heat treatment condition were carried out tensile test using UTM (Universal Testing Machine).

용탕단조법에 의한 Alumina단섬유강화 AC4C기 복합재료의 인장강도에 미치는 점결제 및 가압력의 영향 (Influence of Binder and Applied Pressure on Tensile Strength of $AC4C/Al_2O_3$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권2호
    • /
    • pp.138-145
    • /
    • 1995
  • The mechanical properties of $Al/Al_2O_3$ composites have been investigated in relation with manufacturing factors such as applied pressure of casting and binder amount of preform. It was found that tensile strength increases with an increase of applied pressure, but decreases with binder amount. Increase of tensile strength is attributable to refinement of microstructure, improvement of intefacial bonding between $Al_2O_3$ short fiber and matrix, decrease of porosity in the matrix. Due to the high thermal stability of alumina short fiber, tensile strength of composites at $150^{\circ}C$ was superior to matrix alloy at room temperature. To evaluate the strength of composites, modified Kelly-Tyson's equation was introduced. Manufacturing factor M was obtained calculating from experimental data. M values were increased with applied pressure, but decreased with binder amount. The initiation of microcrack appeared to be at interface and reinforcement colony. Amount of micro-dimple was increased with applied pressure, and interfacial debonding phenomenon was remarkable with an increase of binder amount.

  • PDF

금형주조법을 이용한 TiNi/6061Al 지적복합재료의 제조 및 기계적 특성 (Fabrication and Mechanical Properties of TiNi/6061Al Smart Composite by Permanent Mold Casting)

  • 김순국;이준희;윤두표;박영철;이규창;김영희
    • 한국주조공학회지
    • /
    • 제18권6호
    • /
    • pp.534-540
    • /
    • 1998
  • 6061Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by Permanent Mold Casting to investigate the mechanical properties of the smart composites. The composites have showed good interface bonding as a result of the analysis of SEM and EDX. The smartness of composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. The tensile strength of the composites was tested at temperatures between $90^{\circ}C$ and room temperature with increasing amount of pre-strain, and it showed that the tensile strength at $90^{\circ}C$ was higher than that of the room temperature. Especially, the tensile strength of the composite increases with increasing pre-strain. It showed that hardness of matrix was higher than that of common 6061Al alloy.

  • PDF

용탕단조한 Ni-aluminide 보강 AC8A기 복합재료의 조직 및 특성 (Microstructure and Properties of Squeeze Cast AC8A MMC Reinforced with Ni-aluminide)

  • 주대헌;김명호;권숙인;김준수
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.195-206
    • /
    • 1997
  • AC8A matrix composites reinforced with Ni-aluminide were fabricated by squeeze casting process, and the characteristics and nature of the growth of Ni-aluminide phases at the interface between nickel and aluminurn were investigated. In the as-cast composites, the reaction layer between Ni skeleton and aluminum matrix was found to be $NiAl_3$, regardless of the casting temperatures and the kinds of preforms. During high temperature solution treatment the $NiAl_3$ layer grew and formed new $Ni_2Al_3$ layer. Because of presence of the porosity formed by Kirkendall effect at the interface between $NiAl_3$ and aluminum matrix, the tensile strength of composites was inferior to that of AC8A matrix alloy. However, the composites exhibited superior wear resistance due to the formation Ni-aluminide intermetallic phases. Composite A, of which Ni skeleton was fully transformed into Ni-aluminide, shows better wear resistance than that of composite B which still possessed some unreacted Ni skeleton.

  • PDF