• Title/Summary/Keyword: Cast aluminum alloy

Search Result 124, Processing Time 0.028 seconds

Solidification Characteristics of Squeeze Cast Al Alloy Composites (Squeeze Cast한 Al기지 금속복합재료의 응고거동)

  • Kim, Dae-Up;Kim, Jin;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF

A Study on the Control of Cast Microstructure in the Aluminum Casting/Forging Process (알루미늄 주조/단조 공정에서 주조조직 제어에 관한 연구)

  • Bae, Won-Byong;Kang, Chung-Yun;Lee, Young-Seok;Lee, Sung-Mo;Hong, Chang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.41-47
    • /
    • 1999
  • The scale of dendritic structure of a cast preform plays a key role in determining the mechanical properties of cast/forged products. In this study, casting experiments are carried out to reduce dendrite arm spacing (DAS) to smaller than 20 ${\mu}$m by increasing cooling rate of the mold and then to spheriodize dendritic structures by addition of alloying elements such as Zr and Ti-B. From the casting experiments, appropriate casting conditions for producing the cast preform of a motorcycle connecting rod are obtained. To obtain fine microstructures of the cast preform, mold temperature must set to be low whilst cooling rate being high. When cooling rate is 10 $^{\circ}C$/s, the size of DAS is 17.4 ${\mu}$m. And the degree of spheriodization of a grain in the cast preform is described by aspect ratio, which is defined as the ratio of major and minor radii of an elliptical grain. When 0.5% Zr and 0.24 % Ti+B are added to the molten aluminum alloy, the best aspect-ratio 0.75 is obtained. After forging the cast preform of a motorcycle connecting rod, the microstructure and mechanical properties of the cast preform are compared with those of the cast/forged product. Cast/forged products are superior in microstructure and in mechanical properties such as ultimate strength, elongation, and hardness.

  • PDF

A Study on the Manufacturing of an Aluminum Shift-Fork by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 쉬프트 포크 제조에 관한 연구)

  • 배원병;이승재;유민수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.193-197
    • /
    • 2002
  • In this study, the casting/forging process was applied to the Shift-Fork, a manual transmission part of automobiles. In the casting experiments, the effects of additives, Sr, Ti+B and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. When 0.03% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform and the highest tensile strength and elongation accomplished. And when 0.2% Ti+B were added into the molten Al-Si alloy, the highest values of tensile strength were obtained. The maximum hardness was in case of 0.2% Mg. In the forging experiment, it was confirmed that the optimal configuration of the cast preform could be predicted by FE analysis. To minimize the cost as the press size, the compact shape of preform was proposed to reduce the volume of flash. The modification of shape in designing preform was performed to attain a satisfactory performance in the areas where the mechanical strength were more required. By using FVM(Finite Volume Method) software, it was verified that a proposed casting design was available. To identify the relationship between effective strain and mechanical properties of the final forged product, the compression test was performed. As the result, the tensile strength and elongation of a cast preform were much higher than before forging. The minimum forging temperature was found 40$0^{\circ}C$ to save heating time.

  • PDF

Casting Technology of an Aluminum Alloy Composite Brake Disc (알루미늄 복합재 제동디스크 주조 기술 개발)

  • Goo, Byeong-Choon;Kim, Myung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.971-974
    • /
    • 2011
  • Aluminum matrix composites reinforced with SiC particles(AMC) are one of the candidate materials for the weight reduction of rolling stock brake discs. It is known that weight reduction of about 40% is possible when they replace conventional cast iron brake discs. But casting is not easy because of bad wettability of SiC with Al alloy. We developed two AMC brake discs with SiC volume fraction of 20% by a new casting method. It was found the developed method produced brake discs of good quality.

  • PDF

Effect of Hot Extrusion on the Mechanical Properties of 6061 Aluminum Alloy composites Reinforced with SiC whisker (SiC휘스커로 강화한 6061 Al합금 복합재료의 기계적 특성에 미치는 열간압출의 영향)

  • Kim, Jun-Su;Lim, Su-Geun
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • Both cast and extruded composites of SiC whisker reinforced 6061 Al alloy matrix were fabricated by high pressure infiltration of the alloy melt into the SiC preform and subsequent hot extrusion of the composite ingots. The micro structures, age hardening behavior and mechanical properties have been examined on the both cast and extruded composites of SiCw/6061. The cast composites of SiCw/6061 were obtained in which SiC whiskers were randomly oriented. Hot extrusion of these cast composites lead to alignment of the whisker in the direction of extrusion. Strengthening effect of whisker in the extruded composites is lower than that of the cast composites. The cast composites of SiCw/6061 showed higher thensile strength and lower elongation than extruded composites of SiCw/6061 at all testing temperatures. Lower tensile strength and higher elongation of the extruded composites were attributable to fine grain structures in which grain boundary sliding occruued preferentially at elevated temperatures.

  • PDF

Microstructure and Tensile Properties of Al-Mn/Al-Si Hybrid Aluminum Alloy Prepared by Electromagnetic Duo-Casting (전자기 듀오캐스팅으로 제조한 Al-Mn/Al-Si 하이브리드 알루미늄합금의 미세조직과 인장 특성)

  • Park, Sung-Jin;Li, Tingju;Kim, Chong-Ho;Park, Jun-Pyo;Chang, Si-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The microstructure and tensile properties of Al-Mn/Al-Si hybrid aluminum alloys prepared by electromagnetic duocasting were investigated. Only the Al-Mn alloy showed the typical cast microstructure of columnar and equiaxed crystals. The primary dendrites and eutectic structure were clearly observed in the Al-Si alloy. There existed a macro-interface of Al-Mn/Al-Si alloys in the hybrid aluminum alloys. The macro-interface was well bonded, and the growth of primary dendrites in Al-Si alloy occurred from the macro-interface. The Al-Mn/Al-Si hybrid aluminum alloys with a well-bonded macro-interface showed excellent tensile strength and 0.2% proof stress, both of which are comparable to those values for binary Al-Mn alloy, indicating that the strength is preferentially dominated by the deformation of the Al-Mn alloy side. However, the degree of elongation was between that of binary Al-Mn and Al-Si alloys. The Al-Mn/Al-Si hybrid aluminum alloys were fractured on the Al-Mn alloy side. This was considered to have resulted from the limited deformation in the Al-Mn alloy side, which led to relatively low elongation compared to the binary Al-Mn alloy.

Evaluation of Mechanical Properties with Tool Rotational Speed in Dissimilar Cast Aluminum and High-Strength Steel of Lap Jointed Friction Stir Welding (이종 주조알루미늄-고장력강의 겹치기 마찰교반접합에서 툴회전속도에 따른 기계적 특성평가)

  • Park, Jeong-Hun;Park, Seong-Hwan;Park, Soo-Hyeong;Joo, Young-Hwan;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.90-96
    • /
    • 2019
  • Recently, friction stir welding of dissimilar materials are one of the biggest issues in terms of light-weight and eco-friendly technology of the automotive, aircraft and ship industry. In this study, friction stir welding of dissimilar materials is introduced with different tool rotational speed. Materials used in experimentation consist of A357 gravity cast aluminum alloy and FB590 high-strength steel plates. Dissimilar materials of plate type are fabricated with width of 150mm, length of 300mm and thickness of 3mm and welding is carried out by the lap joint method. The correlation between probe length and mechanical properties were investigated according to rotational speed and welding speed at tool tilt angle 0 degree. Consequently, feasibility of FSWed dissimilar materials were successfully presented in case of cast aluminum and high-strength steel at lap joint method.

Analysis and Design of Alternator Housing for Automobile (자동차용 알터네이터 하우징의 성형해석 및 금형설계)

  • 조영석;박종배;한규택;정영득
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.3-7
    • /
    • 2002
  • The die casting process was used to manufacture a alternator housing for automobile. Specially automobile parts were required light and hight strength. Therefore simulation have been carried out die casting process of the alternator housing. In this paper, we investigated about characteristics of the die casted alternator housing the HPDC(High Pressure Die Casting) process. Also we designed the die casting die with the simulation results of the alternator housing. The MAGMAsoft and Auto-CAD was used as computer simulation and design code and used material was ADC12(Aluminum Die Casting Alloy). We present the results of filling behavior and design of die process of the alternator housing cast. The result obtained about filling behavior and design of die of the cast showed good agreement with test result.

  • PDF

Die Casting Analysis of Motor Housing for Automobile (자동차용 모터하우징에 관한 다이캐스팅 성형해석)

  • 문찬용;박종배;정원영;한규택;정영득
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.769-773
    • /
    • 2002
  • The die easting process was used to manufacture a motor housing for automobile. Specially automobile parts were required light and high strength. Therefore simulations have been carried out die casting process of motor housing. In this paper, we investigated about characteristics of the die casted motor housing with HPDC(High Pressure Die Casting) process. Also the MAGMAsoft was used as computer simulation code and used material was ADC12(Aluminum Die Casting Alloy). We present the results of filling behavior and solidification process of a motor housing cast. The analysis results obtained about filling behavior and solidification of cast showed good agreement with test results.

  • PDF

A study on the squeeze casting of Al-7.0Si-0.4Mg alloy for fuel system parts

  • Kim Soon-Ho;Kim Seong-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.56-59
    • /
    • 2005
  • Aluminum alloy casting is gaining increased acceptance in automotive and electronic industries and especially, squeeze casting is the most efficient method of mass manufacturing of such parts. In this study, the microstructures and mechanical properties of Al-7.0Si-0.4Mg(AC4C) alloy fabricated by squeeze casting process for development of fuel system parts (fuel rail) are investigated. The microstructure of squeeze cast specimen was composed of eutectic structure aluminum solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment Al-7.0Si-0.4Mg alloy was 298.5MPa. It was found that Al-7.0Si-0.4Mg alloy had good corrosion resistance in electrochemical polarization test.