• 제목/요약/키워드: Cast Steel

검색결과 496건 처리시간 0.023초

Mini-Mill 연속주고기의 동적 Bulging해석 Model(I) -주편의 변형거동을 중심으로- (A Deformation Behavior Analysis of Dynamic Bulging in the Mini-Mill Continuous Casting System)

  • 한성욱;정영진;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.138-143
    • /
    • 1998
  • The continuous casting process has been adopted increasingly in recent years to save both energy and labor. It has experienced a rapid development in the production of semi-finished steel products, replacing the conventional route of ingot casting plus rolling. To achieve this good merit, however, more studies about a heat transfer mechanism between roll and slab are needed. So this paper shows the results of the deformation behavior of steel cast slabs, which are about the solidification and heat transfer. This study is used to prevent internal cracks of a slab in a bending and unbending zone. The value of moving strand shell bulging between two supporting rollers under ferrostatic pressure and slab-self weight has been computed in terms of creep and elastic-plasticity. The high strand distributions in solidified shell undergoes a series of bulging are calculated with boundary condition a very closed to continuous steel cast slabs productions.

  • PDF

Ar-CO$_2$ Plasma에 의한 강(鋼)의 정련(精鍊) (Refining of Steels by $Ar-CO_2$ Plasma)

  • 장석영;김동의
    • 한국주조공학회지
    • /
    • 제6권4호
    • /
    • pp.284-289
    • /
    • 1986
  • Decarburization phenomena have been studied by plasma in stainless steel, plain carbon steel and cast iron. It was also investigated the movement of impurity element P,S in the plasma jet metal pool. The plasma jet was obtained by $Ar\;-\;CO_2$ gas mixture with 5 kVA DC power source. It produced enough temperature to dissociate into activated oxygen atom by reaction of $CO_2{\leftrightarrows}CO+O^+$ and it reacted with ${\underline{C}}$ in metal pool. Decarburization rate was increased about 5 times in comparing with the conventional induction melted metal pool by $CO_2$ gas decarburization. Even under the Ar plasma jet, decarburization was obtained by agitation of metal bath by $Ar^+$ bombardment and dilution phenomena of carbon atom under the very high plasma temperature. But heavy element P and S are not much removed because they are too heavy in mass to be activated by $Ar^+$ion bombardment. Desulphurization was achieved by $Ar\;-\;CO_2$ plasma in plain carbon steel and cast iron by the reaction of $SO_2({\underline{S}}+O^+)$. But dephosphorization could not be obtained by $Ar\;-\;CO_2$ plasma, because gaseous reaction of phosphorous oxide (${\underline{P}}+O^+$) was not existed.

  • PDF

가돌리늄(Gd) 첨가에 따른 1A 등급 듀플렉스 스테인레스 강의 미세조직 및 파괴 특성 변화 (Microstructure and Fracture Property of 1A Grade Duplex Stainless Steel with the Addition of Gadolinium)

  • 임재한;정현도;안지호;문병문
    • 한국주조공학회지
    • /
    • 제36권1호
    • /
    • pp.24-31
    • /
    • 2016
  • CD4MCU duplex stainless steel with gadolinium was fabricated as a neutron absorbing material by the air induction melting method. The gadolinium formed intermetallic compounds of Cu-Gd-Fe. There were no significant differences in hardness or ultimate tensile strength between experimental alloys. With the addition of gadolinium the yield strength of the cast alloy significantly increased, from $478.8{\pm}11.6$ to $514.2{\pm}29.9MPa$, whereas elongation of the cast alloy decreased with the addition of gadolinium, from $26.0{\pm}7.1$ to $7.0{\pm}2.5%$ due to the formation of gadolinium based intermetallic compounds.

오스테나이트 스테인리스 주강의 미세 조직 및 고온 산화 특성에 미치는 합금원소의 영향 (Effects of Alloying Elements on the Characteristics of Microstructure and High Temperature Oxidation of Cast Austenitic Stainless Steel)

  • 이인성;전순혁;김순태;이정석;고영상;김종명
    • 한국주조공학회지
    • /
    • 제30권5호
    • /
    • pp.179-186
    • /
    • 2010
  • To elucidate the effects of alloying elements on the characteristics of microstructure and high temperature oxidation of cast austenitic stainless steel, a thermodynamic calculation, a cyclic oxidation test, a X-ray diffraction, a scanning electron microscopy-back scattered electron, a electron probe microanalysis were conducted. The thermodynamic calculation for the effect of vanadium (V) addition on the formation of various precipitates leads to a decrease of chromium (Cr)-rich $M_{23}C_6$ carbides due to the formation of M (C, N) carbo-nitrides containing V and / or niobium (Nb). The V added alloy increased the resistance to high temperature oxidation due to a decrease of Cr-depleted zone deteriorating the oxidation resistance and due to the V-enriched oxide layer formed in inner oxide layer blocking the outward transport of cations.

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

전기화학적 방법에 의한 주조 스테인리스강 CF8M $\sigma$상 열화평가 (Evaluation of the $\sigma$-Phase Degradation for Cast Stainless Steel CF8M by the Electrochemical Method)

  • 권재도;김중형;박중철;변장환;이우호
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2014-2021
    • /
    • 1999
  • The present investigation is concerned with the degradation characteristics of cast stainless steel(CF8M), exposed to the $\sigma$-phase degradation at $700^{\circ}C$. In the present paper, the degradation of CF8 M at $700^{\circ}C$ is evaluated by a non-destructive test, DL-EPR(double loop electrochemical potentiokinetic reactivation). The surface of specimens is observed by using scanning electron microscopy after DL-EPR test. Also. chromium contents of matrix, grain boundary and ferrite phase are analyzed by electron probe X-ray micro analyzer. Through the experiments, the following results are obtained 1) The degree of sensitization(DOS) of CF8M aged up to 15hr at $700^{\circ}C$ is increased with acing time while that is decreased with aging time from 15hr to 150hr. 2) The impact energy decreases with increase of $\sigma$-phase while DOS increases with $\sigma$-phase until aging time reaches to 15hr. After the aging time. 15hr, the $\sigma$-phase and the rate of impact energy with respect to aging time decreases. Therefore the degradation behavior of the CF8M can be evaluated by comparing SEM micrographs and the value of DOS.

파이프 형상의 이종 주조알루미늄-고장력강의 마찰교반용접에서 확정선별설계법에 의한 인장강도 응용 (Tensile Strength Application Using a Definitive Screening Design Method in Friction Stir Welding of Dissimilar Cast Aluminum and High-Strength Steel with Pipe Shape)

  • 최이존;박성환;이명원;박재하;최병준;강명창
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.98-104
    • /
    • 2020
  • Recently, friction stir welding of dissimilar materials has become one of the biggest issues in lightweight and eco-friendly bonding technology. In this study, a lightweight torsion beam axle, which is an automobile chassis component, was used in the welding to cast aluminum material. The friction stir welding process of A357 cast aluminum and FB590 high-strength steel as well as the effects of the process parameters were investigated and optimized using a novel definitive screening design (DSD). ANOVA was used to predict the importance of the process parameters with 13 degradation experiments using the proposed DSD. Also, FSWed experiments were conducted using an optical microscope analysis to investigate the tensile strength behavior in the weld area. In addition to determining the interaction between the tool's rotational speed and the plunge speed, results indicate that the influence of the plunge depth was the most significant.

고대 한반도 주조철기 열처리 기술에 대한 고찰 (A Study of Cast Ironware Heat Treatment Technique in Ancient Korea)

  • 최영민
    • 헤리티지:역사와 과학
    • /
    • 제53권1호
    • /
    • pp.168-183
    • /
    • 2020
  • 기원전 5세기부터 중국에서는 주조철기의 사용을 늘리기 위해 주조철기 특유의 취성(脆 性)을 제거하려 노력해 왔다. 그중 한 가지는 주조철기를 생산한 다음 별도의 가마에서 풀림열처리를 하는 기술이다. 이 기술은 조직 내 탄소를 응집하거나 제거해, 주조철기의 취성을 제거하고 단조(鍛造)를 가능하게 만드는 것이다. 풀림열처리 기술의 실체를 명확히 하기 위해 현재의 제철 기술 및 중국·일본의 연구 성과를 바탕으로 한반도 출토 고대 주조철기 가운데, 풀림열처리 기술이 확인된 가단주철제 주조철기를 검토하였다. 그 결과 원삼국시대 이전까지 가단주철제 주조철기는 모두 외부로부터 수입된 것으로 추정된다. 또한 일본 이시가미신궁에 소장 중인 칠지도가 한반도에서 제작된 것으로 본다면, 4세기에 들어서야 백제에서는 풀림열처리 기술을 확보했을 가능성이 있다. 하지만 당시에는 괴련철을 중심으로 철 생산이 이루어졌으며, 괴련철을 정련한 괴련강을 소재로 다량의 단조철기가 제작되었다. 또한 기존의 주조철기 중 주조괭이를 제외한 대부분의 주조철기가 단조철기로 대체되었다. 따라서 삼국시대까지 풀림열처리 기술은 많이 사용되지 못하였다. 하지만 통일신라시대에 들어서 철 생산 및 유통의 지역 거점인 장안리 유적에서 확인될 정도로 기술이 확산된 것을 확인하였다.

자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성 (Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars)

  • 정광기;이상우;권성욱;송명석
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

열간 자유단조 공정시 내부 기공 압착 거동에 관한 해석 (FE-Analysis on void closure behavior during hot open die forging process)

  • 권용철;이정환;이승욱;정용수;김남수;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.160-164
    • /
    • 2007
  • In the steel industry, there is a need to produce large forged parts for the automobile industries, the flight and shipping industries ad military industries. In the steel-industry application, a cogging technique for cast ingots is required, because the major parts are needed as one large body in order to obtain higher quality. Therefore, cogging process is the primary step in manufacturing of practically large open-die forging. In the cogging process, internal voids have to be eliminated as defects, The present work is concerned with the elimination of the internal voids in large ingots so as obtain sound products. In this study, hot compression tests were carried out to obtain the flow stress of cast microstructure at different temperature and strain rates. The FEM analysis are performed to investigate the overlap defect of cast ingots during cogging stage. The measure flow stress data were used to simulate the cogging process of cast ingot using the practical material properties. Also the analysis of void closure are performed by using the $DEFORM^{TM}$-3D. The calculated results of void closure behavior are compared with the measured results before and after cogging, which are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the comparison of practical experiment and numerical analysis.

  • PDF