• Title/Summary/Keyword: Cassava

Search Result 177, Processing Time 0.031 seconds

Towards a Miniaturized Culture Screening for Cellulolytic Fungi and Their Agricultural Lignocellulosic Degradation

  • Arnthong, Jantima;Siamphan, Chatuphon;Chuaseeharonnachai, Charuwan;Boonyuen, Nattawut;Suwannarangsee, Surisa
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1670-1679
    • /
    • 2020
  • The substantial use of fungal enzymes to degrade lignocellulosic plant biomass has widely been attributed to the extensive requirement of powerful enzyme-producing fungal strains. In this study, a two-step screening procedure for finding cellulolytic fungi, involving a miniaturized culture method with shake-flask fermentation, was proposed and demonstrated. We isolated 297 fungal strains from several cellulose-containing samples found in two different locations in Thailand. By using this screening strategy, we then selected 9 fungal strains based on their potential for cellulase production. Through sequence-based identification of these fungal isolates, 4 species in 4 genera were identified: Aspergillus terreus (3 strains: AG466, AG438 and AG499), Penicillium oxalicum (4 strains: AG452, AG496, AG498 and AG559), Talaromyces siamensis (1 strain: AG548) and Trichoderma afroharzianum (1 strain: AG500). After examining their lignocellulose degradation capacity, our data showed that P. oxalicum AG452 exhibited the highest glucose yield after saccharification of pretreated sugarcane trash, cassava pulp and coffee silverskin. In addition, Ta. siamensis AG548 produced the highest glucose yield after hydrolysis of pretreated sugarcane bagasse. Our study demonstrated that the proposed two-step screening strategy can be further applied for discovering potential cellulolytic fungi isolated from various environmental samples. Meanwhile, the fungal strains isolated in this study will prove useful in the bioconversion of agricultural lignocellulosic residues into valuable biotechnological products.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes

  • Lee, Ji-Yeon;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Some of the edible plants like apricot kernel, flaxseed, and cassava generate hydrogen cyanide (HCN) when cyanogenic glycosides are hydrolyzed. Rhodanese (thiosulfate: cyanide sulfurtransferases of TSTs; EC: 2.8.1.1) is a sulfide-detoxifying enzymes that converts cyanides into thiocyanate and sulfite. This enzyme exists in a liver and kidneys in abundance. The present study is to evaluate the conversion of apricot cyanogenic glycosides into thiocyanate by human hepatic (HepG2) and colonal (HT-29) cells, and the induction of the enzymes in the rat. The effects of short term exposure of amygdalin to rats have also been investigated. Cytosolic, mitochondrial, and microsomal fractions from HepG2 and HT-29 cells and normal male Spraque-Dawley rats were used. When apricot kernel extract was used as substrate, the rhodanese activity in liver cells was higher than the activity in colon cells, both from established human cell line or animal tissue. The cytosolic fractions showed the highest rhodanese activity in all of the cells, exhibiting two to three times that of microsomal fractions. Moreover, the cell homogenates could metabolize apricot extract to thiocyanate suggesting cellular hydrolysis of cyanogenic glycoside to cyanide ion, followed by a sulfur transfer to thiocyanate. After the consumption of amygdalin for 14 days, growth of rats began to decrease relative to that of the control group though a significant change in thyroid has not been observed. The resulting data support the conversion to thiocyanate, which relate to the thyroid dysfunction caused by the chronic dietary intake of cyanide. Because Korean eats a lot of Brassicaceae vegetables such as Chinese cabbage and radish, the results of this study might indicate the involvement of rhodanese in prolonged exposure of cyanogenic glycosides.

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.

Studies on Improved Amylases Developed by Protoplast Fusion of Aspergillus species

  • Adeleye, Tolulope Modupe;Kareem, Sharafadeen Olateju;Olufunmilayo, Bankole Mobolaji;Atanda, Olusegun;Osho, Michael Bamitale;Dairo, Olawale
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • Improved amylases were developed from protoplast fusants of two amylase-producing Aspergillus species. Twenty regenerated fusants were screened for amylase production using Remazol Brilliant Blue agar. Crude enzyme extracts produced by solid state fermentation of rice bran were assayed for activity. Three variable factors (temperature, pH and enzyme type) were optimized to increase the amylase activity of the parents and selected fusants using rice bran medium and solid state fermentation. Analysis of this optimization was completed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM). Amylase activity assays conducted at room temperature and 80℃ demonstrated that Aspergillus designates, T5 (920.21 U/ml, 966.67 U/ml), T13 (430 U/ml, 1011.11 U/ml) and T14 (500.63 U/ml, 1012.00 U/ml) all exhibited improved function making them the preferred fusants. Amylases produced from these fusants were observed to be active over the entire pH range evaluated in this study. Fusants T5 and T14 demonstrated optimal activity under acidic and alkaline conditions, respectively. Fusants T13 and T14 produced the most amylase at 72 h while parents TA, TC and fusant T5 produced the most amylase after 96 h of incubation. Response surface methodology examinations revealed that the enzyme from fusant T5 was the optimal enzyme demonstrating the highest activity (1055.17 U/ml) at pH 4 and a temperature of 40℃. This enzyme lost activity with further increases in temperature. Starch hydrolysis using fusant T5 gave the highest yield of glucose (1.6158 g/100 ml). The significant activities of the selected fusants at 28 ± 2℃ and 80℃ and the higher sugar yields from cassava starch hydrolysis over their parental strains indicate that it is possible to improve amylase activity using the protoplast fusion technique.

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

A Study on Measures to Promote Rural Community Empowerment Project for Residents in Jinja, Uganda: Focused on On-Site Investigation on the Feasibility of Creating a Tourism Agriculture Complex

  • Jung, Yong Jo
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The purpose of this research is to strengthen rural community empowerment by creating a tourism farm as a plan to reduce relative poverty and to improve the quality of life by creating jobs and increasing the income of local residents in underdeveloped countries. To do so, literature review, stakeholder interviews, on-site investigations, focus-group interviews, a project meeting for residents and a questionnaire survey were performed and analyzed and the results were as follows. First, Uganda has the potential to increase agricultural production based on its warm climate, fertile land and abundant natural resources. The quality of life of local residents is expected to be improved by realizing high-added values through the convergence of the conventional existing agricultural industry and other industries if the agricultural technology is properly transferred based on abundant labor force and low labor expenses. Opportunities for the success of the project can be spread to other rural villages across the country. Second, since local residents are now cultivating sugar cane, cassava, matoke, banana, coffee and so on as a farm owner, tourism agriculture with high-added values can be promoted by vitalizing communities based on farming technology to be transferred and a cooperative farm. It is also necessary to implement a rural community empowerment project to do so. Third, the university that is the cooperative partner of the project is positively considering to train experts by establishing a community development department, and, if necessary, a technical training center to educate the general public, which is expected to create synergic effects through the convergence of education, agriculture and tourism.

Change and Continuity in Traditional Timugon Rice Cultivation Beliefs and Practices

  • On, Low Kok;Pugh-Kitingan, Jacqueline;Ibrahim, Ismail
    • SUVANNABHUMI
    • /
    • v.9 no.2
    • /
    • pp.91-122
    • /
    • 2017
  • Before the start of the North Borneo Company administration in North Borneo (now Sabah, Malaysia) in 1882, the Timugon Murut of today's interior Tenom District lived in longhouses, and practiced head-hunting during wars with other Murutic ethnic groups. Their economy revolved around swidden agriculture of hill rice, sago, and cassava. Wet rice cultivation and water buffaloes were introduced just before 1885. Wet rice was planted on the alluvial plains around the Pegalan and Padas Rivers, while dry rice was planted on hillside swiddens that had been cleared by slash-and-burn methods. Today, wet rice cultivation and cash-cropping on the plains are the main Timugon socioeconomic activities, while some families also plant dry rice on the hills as a back-up. The Timugon believe that the physical world is surrounded by the spiritual world, and everything was made by the creator Aki Kapuuno'. The focus of this field research paper is on the beliefs and ritual practices of the Timugon connected to their traditional rice agriculture. This study found that for generations, the Timugon believed that since animals were created by Aki Kapuuno' for the wellbeing of humans, various types of animals and birds convey omens to guide people. Thus, the older Timugon rice cultivation is strongly influenced by good and bad omens and taboos, and also involves symbolic practices and ritual offerings to guardian spirits of the rice. After the 1930s and especially since the 1960s, most Timugon became Roman Catholic Christians. Hence, this paper also examines changes in the traditional Timugon rice cultivation related beliefs and practices due to religious conversion and other factors.

  • PDF

Evaluation of a Nutrition Model in Predicting Performance of Vietnamese Cattle

  • Parsons, David;Van, Nguyen Huu;Malau-Aduli, Aduli E.O.;Ba, Nguyen Xuan;Phung, Le Dinh;Lane, Peter A.;Ngoan, Le Duc;Tedeschi, Luis O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1237-1247
    • /
    • 2012
  • The objective of this study was to evaluate the predictions of dry matter intake (DMI) and average daily gain (ADG) of Vietnamese Yellow (Vang) purebred and crossbred (Vang with Red Sindhi or Brahman) bulls fed under Vietnamese conditions using two levels of solution (1 and 2) of the large ruminant nutrition system (LRNS) model. Animal information and feed chemical characterization were obtained from five studies. The initial mean body weight (BW) of the animals was 186, with standard deviation ${\pm}33.2$ kg. Animals were fed ad libitum commonly available feedstuffs, including cassava powder, corn grain, Napier grass, rice straw and bran, and minerals and vitamins, for 50 to 80 d. Adequacy of the predictions was assessed with the Model Evaluation System using the root of mean square error of prediction (RMSEP), accuracy (Cb), coefficient of determination ($r^2$), and mean bias (MB). When all treatment means were used, both levels of solution predicted DMI similarly with low precision ($r^2$ of 0.389 and 0.45 for level 1 and 2, respectively) and medium accuracy (Cb of 0.827 and 0.859, respectively). The LRNS clearly over-predicted the intake of one study. When this study was removed from the comparison, the precision and accuracy considerably increased for the level 1 solution. Metabolisable protein was limiting ADG for more than 68% of the treatment averages. Both levels differed regarding precision and accuracy. While level 1 solution had the least MB compared with level 2 (0.058 and 0.159 kg/d, respectively), the precision was greater for level 2 than level 1 (0.89 and 0.70, respectively). The accuracy (Cb) was similar between level 1 and level 2 (p = 0.8997; 0.977 and 0.871, respectively). The RMSEP indicated that both levels were on average under-or over-predicted by about 190 g/d, suggesting that even though the accuracy (Cb) was greater for level 1 compared to level 2, both levels are likely to wrongly predict ADG by the same amount. Our analyses indicated that the level 1 solution can predict DMI reasonably well for this type of animal, but it was not entirely clear if animals consumed at their voluntary intake and/or if the roughness of the diet decreased DMI. A deficit of ruminally-undegradable protein and/or a lack of microbial protein may have limited the performance of these animals. Based on these evaluations, the LRNS level 1 solution may be an alternative to predict animal performance when, under specific circumstances, the fractional degradation rates of the carbohydrate and protein fractions are not known.

Determination of the Nutritive Value of Tropical Biomass Products as Dietary Ingredients for Monogastrics Using Rats: 1. Comparison of Eight Forage Species at Two Levels of Inclusion in Relation to a Casein Diet

  • Phuc, Bui Huy Nhu;Lindberg, Jan Erik;Ogle, Brian;Thomke, Sigvard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.986-993
    • /
    • 2001
  • In balance experiments with rats either 25 or 50% of the casein protein in the control diet was replaced with one of the following eight sun-dried tropical biomass products: water spinach plants (WS) (Ipomoea aquatica Forsk), leucaena leaves (LL) (Leuceana leucocephala), duckweed plants (DW) (Lemma minor L.), groundnut foliage (OF) (Arachis hypogaea L.), trichantera leaves (Tric) (Trichantera gigantea), indicago leaves (Ind) (Indigofera hirsuta), mungbean foliage (Mb) (Phaseolus aureus), and cassava leaves (CL) (Manihot esculenta Crantz). The experiment included 102 rats with six individuals per treatment group. In three of the 16 biomass treatment groups, feed intake and weight gain of the rats were unacceptably low, and therefore they were excluded from the statistical evaluation, The crude protein (CP) content of the biomass products varied between 20.9% (Tric) and 33.2% (DW), whereas the content of NDF varied between 18.5% (Ind) and 32.2% (DW) of dry matter (DM). The total content of essential amino acids (g/16 g N) was comparable with that of alfalfa meal, except for GF and Tric, which were inferior. Between plant species, differences in dietary digestibility of organic matter (dOM) and CP (dCP) were observed (p<0.001). Also, the replacement level negatively influenced dOM and dCP (p<0.001). The lowest values for dOM (p<0.001) were observed for diets including biomass products with the highest content of NDF (OF, Tric, Mb, LL). Digestibility of CP was negatively affected by level of protein replacement. Significant (p<0.001) differences were found in N-retention and biological value among diets with different biomass products. The most favourable overall results were obtained for DW, WS and CL. The main factors affecting the nutritive value of the diets tested were their NDF content, dCP and AA profile of the biomass. Also antinutritive component(s) may have influenced the process of digestion and metabolism of some of the biomass products.