• Title/Summary/Keyword: Caspase-10

Search Result 1,355, Processing Time 0.054 seconds

Caspase-3-facilitated Stoichiometric Cleavage of a Large Recombinant Polyprotein (카스파제-3 효소를 이용한 폴리-단백질의 정량적 프로세싱 분석)

  • Kim, Moonil
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 2015
  • In this study, it is reported that a large polyprotein can be stoichiometrically cleaved by the use of caspase-3-dependent proteolysis. Previously, it has been shown that the proteolytic IETD motif was partially processed when treated with caspase-3, while the DEVD motif was completely cleaved. The cleavage efficiency of the DEVD-based substrate was approximately 2.0 times higher than that of the IETD substrate, in response to caspase-3. Based on this, 3 protein genes of interest were genetically linked to each other by adding two proteolytic cleavage sequences, DEVD and IETD, for caspase-3. Particularly, glutathione-S transferase (GST), maltose binding protein (MBP), and red fluorescent protein (RFP) were chosen as model proteins due to the variation in their size. The expressed polyprotein was purified by immobilized metal ion affinity chromatography (IMAC) via a hexa-histidine tag at the C-terminal end, showing 93 kDa of a chimeric GST:MBP:RFP fusion protein. In response to caspase-3, cleavage products, such as MBP:RFP (68 kDa), MBP (42 kDa), RFP (26 kDa), and GST (25 kDa), were separated from a large precursor GST:MBP:RFP (93 kDa) via SDS-PAGE. The results obtained from this study indicate that a multi-protein can be stoichiometrically produced from a large poly-protein by using proteolytic recognition motifs, such as DEVD and IETD tetra-peptides, for caspase-3.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

A Natural L-Arginine Analog, L-Canavanine-Induced Apoptosis is Suppressed by Protein Tyrosine Kinase p56lck in Human Acute Leukemia Jurkat T Cells (인체 급성백혈병 Jurkat T 세포에 있어서 L-canavanine에 의해 유도되는 세포자살기전에 미치는 단백질 티로신 키나아제 p56lck의 저해 효과)

  • Park, Hae-Sun;Jun, Do-Youn;Woo, Hyun-Ju;Rue, Seok-Woo;Kim, Sang-Kook;Kim, Kyung-Min;Park, Wan;Moon, Byung-Jo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1529-1537
    • /
    • 2009
  • To elucidate further the antitumor effects of a natural L-arginine analogue, L-canavanine, the mechanism underlying apoptogenic activity of L-canavanine and its modulation by protein tyrosine kinase $p56^{lck}$ was investigated in human Jurkat T cells. When the cells were treated with 1.25 to 2.5 mM L-canavanine for 36 h, several apoptotic events including mitochondrial membrane potential (${\Delta\Psi}m$) loss, activation of caspase-9, -3, -8, and -7, poly (ADP-ribose) polymerase (PARP) degradation, and DNA fragmentation were induced without alteration in the levels of Fas or FasL. These apoptotic changes were more significant in $p56^{lck}$-deficient Jurkat clone JCaM1.6 than in $p56^{lck}$-positive Jurkat clone E6.1. The L-canavanine-induced apoptosis observed in $p56^{lck}$-deficient JCaM1.6 cells was significantly reduced by introducing $p56^{lck}$ gene into JCaM1.6 cells by stable transfection. Treatment of JCaM1.6/lck cells with L-canavanine caused a transient 1.6-fold increase in the kinase activity of $p56^{lck}$. Both FADD-positive wild-type Jurkat T cell clone A3 and FADD-deficient Jurkat T cell clone I2.1 exhibited a similar susceptibility to the cytotoxicity of L-canavanine, excluding involvement of Fas/FasL system in triggering L-canavanine-induced apoptosis. The L-canavanine-induced apoptotic sub-$G_1$ peak and activation of caspase-3, -8, and -7 were abrogated by pan-caspase inhibitor (z-VAD-fmk), whereas L-canavanine-induced activation of caspase-9 was not affected. These results demonstrated that L-canavanine caused apoptosis of Jurkat T cells via the loss of ${\Delta\Psi}m$, and the activation of caspase-9, -3, -8, and -7, leading to PARP degradation, and that the $p56^{lck}$ kinase attenuated the ${\Delta\Psi}m$ loss and activation of caspases, and thus contributed as a negative regulator to L-canavanine-induced apoptosis.

Polyacetylene Compound from Cirsium japonicum var. ussuriense Inhibited Caspase-1-mediated IL-$1{\beta}$ Expression

  • Shim, Hong;Moon, Jung Sun;Lee, Sookyeon;Yim, Dongsool;Kang, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.12 no.5
    • /
    • pp.213-216
    • /
    • 2012
  • Our previous report showed that polyacetylene compound, 1-Heptadecene-11, 13-diyne-8, 9, 10-triol (PA) from the root of Cirsium japonicum var. ussuriense has anti-inflammatory activity. In this study we investigated the role of the PA as inhibitor of caspase-1, which converts prointerleukin-$1{\beta}$ (proIL-$1{\beta}$) to active IL-$1{\beta}$ and is activated by inflammasome involved in the inflammatory process. We tested the effect of PA on the production of pro-inflammatory cytokines, IL-$1{\beta}$ in murine macrophage cell line, RAW264.7. PA inhibited lipopolysaccharide (LPS)-induced IL-$1{\beta}$ production by macrophages at a dose dependent manner. PA also suppressed the activation of caspase-1. The mRNA level of ASC (apoptosis-associated spec-like protein containing a CARD), an important adaptor protein of inflammasome, was decreased in the PA treated group. Therefore our results suggest that the anti-inflammatory effect of PA is due to inhibit the caspase-1 activation.

Cyanate Induces Apoptosis of Rat Glioma Cell Line (시안산에 의한 신경아교종세포의 자멸사)

  • Choi, Hye-Jung;Lee, Sang-Hee
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The patient with end-stage renal disease show several nervous complications. The factors contributing to the nervous complications are still incompletely characterized. Cyanate, known as one of the uremic toxins, is derived spontaneously from urea. To investigate the mechanism of cyanate-induced effect on C6 glioma cells, the glioma cells were treated with 0, 1, 5, 10, 20 and 40 mM cyanate. There was a dose-dependent decrease in cell viability and the decreased number of cell was observed in glioma cells by treatment with cyanate. Western blot showed the down- regulation of procaspase-3, which means up-regulation of caspase-3, and the up-regulation of caspase-8, but the down-regulation by cyanate. In addition, cDNA microarray showed 934 down-regulated genes and 165 up-regulated genes on 1,099 genes in cyanate treated group. Treatment with cyanate led to 16 down-regulated genes and 6 up-regulated genes on apoptosis category, and especially heat shock 70 kD protein 1A gene on the category of apoptosis was significantly up-regulated. These results suggest that cyanate can induce apoptosis through caspase-8 and caspase-3 in glioma cells and decrease of gene expression including apoptosis category in glioma cells. These effects of cyanate may play a role in the nervous complications of patient with end-stage renal disease.

Growth Inhibition and Induction of Apoptosis in Human Bladder Cancer Cells Induced by Fermented Citrus Kombucha (감귤 콤부차 발효액의 인체 방광암세포에 대한 성장억제와 Apoptosis에 미치는 영향)

  • Kim, Chung-I;Shin, Seung-Shick;Park, Sung-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1422-1429
    • /
    • 2016
  • Kombucha is a slightly sour beverage fermented by symbiotic micro-organisms, including bacteria and yeasts. In this study, we examined the biological activities of citrus Kombucha (CK) produced by addition of citrus extract to original Kombucha (K). After fermentation for 10 days, radical scavenging activity examined by ABTS and DPPH assays increased by approximately 20% compared to that of K. Moreover, content of total phenolic compounds significantly increased by 60% compared to that of K. Cell proliferation assays utilizing MTT showed that CK treatment significantly inhibited growth of bladder cancer cells, T-24 and 5637, in a dose-dependent manner with $IC_{50}$ values of 4 and 7 mg/mL, respectively. Annexin V staining showed that CK treatment led to apoptosis of cells in a dose-dependent manner. T-24 cells were more sensitive to CK treatment than 5637 cells, as 8 mg/mL of CK resulted in 97% apoptosis of T-24 cells. Western blotting showed that CK treatment led to up-regulation of apoptotic proteins, including caspases-3, -8, -9, and PARP, in bladder cells not in K-treated cells. Taken together, these results demonstrate that CK may be developed as a functional beverage.

Anti-cancer Effects of Palbohoichoon-tang on Neuroblastoma Cells (신경아세포종에 대한 팔보회춘탕(八寶廻春湯)의 항암 효과)

  • An, Jung-Hwan;Cho, Mun-Young;Woo, Chan;Shin, Yong-Jin;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • Objectives : To investigate the anti-cancer effect of Palbohoichoon-tang (PBHCT) extracts. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were microscopically analyzed after staining with $10{\mu}M$ 2-[4-amidinophenyl]-6-indolecarbamidine dihydrochloride (DAPI) and TUNEL. We also analyzed expression of Bcl2, $Bcl_{xL}$, Bax, procaspase-3, procaspase-9, and procyclic acidic repetitive protein (PARP) by western blot method. Results : Observations showed that PBHCT induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. Western blot analysis of total cell lysates revealed that the PBHCT induced cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). In addition, PBHCT dose-dependently increased the activity of caspase-9, caspase-3 and PARP-1. Furthermore, PBHCT reduced anti-apoptotic Bcl2, $Bcl_{xL}$ expression which contributed to the loss of mitochondrial membrane potential and the activations of caspase-9 and caspase-3. Conclusions : These findings suggest that PBHCT exerts anti-cancer effects on human neuroblastoma SH-SY5Y cells by inducing apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl2 and $Bcl_{xL}$, up-regulation of pro-apoptotic proteins such as Bax, and activation of caspase cascades and PARP-1.

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

20(S)-Protopanaxadiol Induces Human Breast Cancer MCF-7 Apoptosis through a Caspase-Mediated Pathway

  • Zhang, Hong;Xu, Hua-Li;Fu, Wen-Wen;Xin, Ying;Li, Mao-Wei;Wang, Shuai-Jun;Yu, Xiao-Feng;Sui, Da-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7919-7923
    • /
    • 2014
  • 20(S)-Protopanaxadiol (PPD), a ginsenoside isolated from Pananx quinquefolium L., has been shown to inhibit growth and proliferation in several cancer cell lines. The aim of this study was to evaluate its anticancer activity in human breast cancer cells. MCF-7 cells were incubated with different concentrations of 20(S)-PPD and cytotoxicity was evaluated by MTT assay. Occurrence of apoptosis was detected by DAPI and Annexin V-FITC/PI double staining. Mitochondrial membrane potential was measured with Rhodamine 123. The Bcl-2 and Bax expression were determined by Western blot analysis. Caspase activity was measured by colorimetric assay. 20(S)-PPD dose-dependently inhibited cell proliferation in MCF-7 cells, with an $IC_{50}$ value of $33.3{\mu}M$ at 24h. MCF-7 cells treated with 20(S)-PPD presented typical apoptosis, as observed by morphological analysis in cell stained with DAPI. The percentages of annexin V-FITC positive cells were 8.92%, 17.8%, 24.5% and 30.5% in MCF-7 cells treated with 0, 15, 30 and $60{\mu}M$ of 20(S)-PPD, respectively. Moreover, 20(S)-PPD could induce mitochondrial membrane potential loss, up-regulate Bax expression and down-regulate Bcl-2 expression. These events paralleled activation of caspase-9, -3 and PARP cleavage. Apoptosis induced by 20(S)-PPD was blocked by z-VAD-fmk, a pan-caspase inhibitor, suggesting induction of caspase-mediated apoptotic cell death. In conclusion, the 20(S)-PPD investigated is able to inhibit cell proliferation and to induce cancer cell death by a caspase-mediated apoptosis pathway.