• 제목/요약/키워드: Caspase-10

검색결과 1,395건 처리시간 0.029초

Ethanol Elicits Inhibitory Effect on the Growth and Proliferation of Tongue Carcinoma Cells by Inducing Cell Cycle Arrest

  • Le, Thanh-Do;Do, Thi Anh Thu;Yu, Ri-Na;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.153-158
    • /
    • 2012
  • Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.

A549세포에서 닥나무 추출물의 미토콘드리아/Caspase 경로를 통한 Apoptosis 유도작용 (Extract of Broussometia kazinoki Induces Apoptosis Through the Mitochondria/Caspase Pathway in A549 Lung Cancer Cells)

  • 김태현;김단희;문연자;임규상;우원홍
    • 동의생리병리학회지
    • /
    • 제30권3호
    • /
    • pp.150-156
    • /
    • 2016
  • Extract of Broussometia kazinoki Rhizodermatis has been traditionally used for geopoong, diuresis, hwalhyeol. In the present study, the apoptotic effect of methanol extract of Broussometia kazinoki (MBK) were investigated. Cell viability of A549 cells was measured by MTT assay. Apoptosis-related protein and MAPK protein levels were measured by Western blot. Chromatin condensation of A549 cells was stained with DAPI. MBK inhibited cell proliferation of A549 cell. Based on DAPI staining, MBK-treated cells manifested nuclear shrinkage, condensation and fragmentation. Treatment of A549 cells with MBK resulted in activation of the caspase-3, -8, -9 and cleavage of poly ADP-ribose polymerase (PARP). In the upstream, MBK increased the expressions Bax and Bak, decreased the expression of Bcl-2, and augmented the Bax/Bcl-2 ratio. MBK-induced apoptosis was accompanied by sustained phosphorylation of JNK, p38 MAPK and apoptosis signal-regulating kinase (ASK)-1. These results suggest that MBK induced apoptosis in A549 cells through Bcl-2 family protein-mediated mitochondria/caspase-3 dependent pathway. In addition, MBK increased the activation of ASK-1, which are critical upsteam signals for JNK/p38 MAPK activation in A549 cancer cells.

해파리 콜라겐 추출물의 보습 효과 (Moisturizing Effect of Jellyfish Collagen Extract)

  • 김동욱;백태선;김윤정;최성규;이대우
    • 대한화장품학회지
    • /
    • 제42권2호
    • /
    • pp.153-162
    • /
    • 2016
  • 본 연구에서는 해파리로부터 콜라겐 추출물을 제조하였고, 이에 대한 보습 효과를 측정하였다. 보습 효과는 caspase 14 발현, filaggrin, hyaluronan synthase-3 (HAS- 3), aquaporin-3 (AQP-3) 및 desmocollin (DSC)을 측정하였다. 그 결과, caspase 14 mRNA 발현은 비교물질인 retinoic acid (RA)와 유사한 효과를 나타냈다. 그리고 콜라겐 추출물은 20 mg/mL의 농도에서 각각 211.7%, 139.9%, 212.5% 및 116.8%의 filaggrin, HAS-3, AQP-3 및 DSC 발현 증가를 나타냈다. 따라서, 본 연구에서 해파리 콜라겐 추출물은 보습 효과를 갖는 화장품 소재로서의 개발 가능성이 클 것으로 기대할 수 있다.

행인(杏仁)에서 추출한 Amygdalin의 자궁경부암세포 ME-180에 대한 항암 효과 (Anti-tumor Effect of Amygdalin extracted from Armeniacae Amarum Semen on Human Cervical Cancer Cell ME-180)

  • 최용석;김연섭;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제32권3호
    • /
    • pp.1-12
    • /
    • 2019
  • Objectives: Amygdalin is abundant in the seeds of bitter almond and apricots of the Prunus genus and other rosaceous plants. Amygdalin is known to have antitussive and anticancer activities. Apoptosis, also known as programmed cell death, is an important mechanism in cancer treatment. Methods: In the present study, we investigated whether the aqueous extract of Amygdalin induces apoptotic cell death in ME-180 cervical cancer cells. For this study, 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynuclotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, flow cytometric analysis, DNA fragmentation assay, Western blot, and caspase-3 enzyme assay were performed on ME-180 cervical cancer cells. Results: Through morphological and biochemical analyses, it was demonstrated that ME-180 cells treated with Amygdalin exhibit several apoptotic features. The treatment of Amygdalin increased the Bax expression and caspase-3 enzyme activity and decreased Bcl-2 expression. Here, we have shown that Amygdalin induces apoptotic cell death in ME-180 cervical cancer cells through Bax-dependent caspase-3 activation. These results suggest the possibility that Amygdalin exerts anti-tumor effect on human cervical cancer.

ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells

  • Zheng, Fei-Meng;Chen, Wang-Bing;Qin, Tao;Lv, Li-Na;Feng, Bi;Lu, Yan-Ling;Li, Zuo-Quan;Wang, Xiao-Chao;Tao, Li-Ju;Li, Hong-Wen;Li, Shu-You
    • BMB Reports
    • /
    • 제52권9호
    • /
    • pp.566-571
    • /
    • 2019
  • Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ${\beta}$-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma.

AGS 인체 위암세포에서 육계 에탄올 추출물(CcEE)과 온열치료의 항암 시너지 효과 (Synergistic Anticancer Effect of the Cinnamomi Cortex Ethanol Extract (CcEE) and Hyperthermia in AGS Human Gastric Cancer Cells)

  • 박선향;안채령;백승호
    • 대한한의학방제학회지
    • /
    • 제27권1호
    • /
    • pp.53-63
    • /
    • 2019
  • Objectives : In this study, we investigated the combination effects of Cinnamomi cortex Ethanol Extract (CcEE) and hyperthermia in the human AGS gastric cancer cell line. Methods : AGS cells were treated with the indicated concentrations of CcEE (0, 50 or $60{\mu}g/mL$) for 1h prior to hyperthermia. And then incubated for a further 30 min at the indicated temperatures (37, 42 or $43^{\circ}C$) in a humidified incubator containing 5% $CO_2$ or a thermostatically controlled water bath for hyperthermia. The cell viability was measured by MTT assay, Morphology assay and Trypan blue assay. To investigate the possible molecular signaling pathways, the activation of mitogen-activated protein kinase (MAPK) proteins (ERK, p38 and JNK) and expression of various anti-apoptotic proteins such as Caspase-3, Caspase-9, p53, Cyclin D1 and MMP-2 were assessed by Western blot analysis. In addition, Annexin V and 7-amino-actinomycin D (7-AAD) staining was performed to examine the apoptotic mechanism. Results : Combination of CcEE with hyperthermia effectively suppressed the cell viability and changed cellmorphology compared with CcEE or hyperthermia treatment alone. Combined treatment also abated the expression of Caspase-3, Caspase-9, Cyclin D1 and MMP-2. Whereas, the expression level of p53 was up-regulated by co-treatment. Moreover, combination treatment enhanced phosphorylation of ERK, p38 and JNK. In addition, this combination increased anti-cancer effect by inducing cell death through the apoptosis. Conclusions : Taken together, all these findings suggest that the combination treatment with CcEE and hyperthermia may have therapeutic potential as a promising approach to patients with stomach cancer.

Loss of RAR-α and RXR-α and enhanced caspase-3-dependent apoptosis in N-acetyl-p-aminophenol-induced liver injury in mice is tissue factor dependent

  • Abdel-Bakky, Mohamed Sadek;Helal, Gouda Kamel;El-Sayed, El-Sayed Mohamed;Amin, Elham;Alqasoumi, Abdulmajeed;Alhowail, Ahmad;Abdelmoti, Eman Sayed Said;Saad, Ahmed Saad
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.385-393
    • /
    • 2021
  • Tissue factor (TF) activates the coagulation system and has an important role in the pathogenesis of various diseases. Our previous study stated that retinoid receptors (RAR-α and RXR-α) are released as a lipid droplet in monocrotaline/lipopolysaccharide-induced idiosyncratic liver toxicity in mice. Herein, the interdependence between the release of retinoid receptors RAR-α and RXR-α and TF in N-acetyl-p-aminophenol (APAP)-induced mice liver toxicity, is investigated. Serum alanine transaminase (ALT) level, platelet and white blood cells (WBCs) counts, protein expression of fibrin, TF, cyclin D1 and cleaved caspase-3 in liver tissues are analyzed. In addition, histopathological evaluation and survival study are also performed. The results indicate that using of TF-antisense (TF-AS) deoxyoligonucleotide (ODN) injection (6 mg/kg), to block TF protein synthesis, significantly restores the elevated level of ALT and WBCs and corrects thrombocytopenia in mice injected with APAP. TF-AS prevents the peri-central overexpression of liver TF, fibrin, cyclin D1 and cleaved caspase-3. The release of RXR-α and RAR-α droplets, in APAP treated sections, is inhibited upon treatment with TF-AS. In conclusion, the above findings designate that the released RXR-α and RAR-α in APAP liver toxicity is TF dependent. Additionally, the enhancement of cyclin D1 to caspase-3-dependent apoptosis can be prevented by blocking of TF protein synthesis.

Contributions of HO-1-Dependent MAPK to Regulating Intestinal Barrier Disruption

  • Zhang, Zhenling;Zhang, Qiuping;Li, Fang;Xin, Yi;Duan, Zhijun
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.175-183
    • /
    • 2021
  • The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.

p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice

  • Moon, Phil-Dong;Han, Na-Ra;Lee, Jin Soo;Kim, Hyung-Min;Jeong, Hyun-Ja
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.176-182
    • /
    • 2021
  • Background: Atopic dermatitis (AD) is associated with chronic skin inflammatory reactions. p-coumaric acid (pCA) is an active ingredient of Panax ginseng Meyer (Araliaceae). Methods: Here, we estimated an anti-AD effect of pCA on activated mast cells, activated splenocytes, and a mouse model of AD. Cytokines levels were measured by ELISA and protein activation was analyzed by Western blotting. 2,4-dinitrofluorobenzene (DNFB) was used to induce AD-like skin lesions. Results: The treatment with pCA suppressed the productions and mRNA expressions of thymic stromal lymphopoietin (TSLP), TNF-α, IL-6, and IL-1β in HMC-1 cells. pCA downregulated the expressions of RIP2 and caspase-1, phosphorylated-(p)p38/pJNK/pERK, and pIKKβ/pIkBα/NF-κB in HMC-1 cells. pCA also decreased the productions of TSLP, TNF-α, IL-6, IL-4, and IFN-γ in the supernatant of stimulated splenic cells. Comparing to DNFB-sensitized control group, pCA-treated group alleviated pathological changes of AD-like lesions. pCA decreased the proteins and mRNA expressions levels of TSLP, IL-6, and IL-4 in the skin lesions. Caspase-1 activation was also downregulated by pCA treatment in the AD-like lesions. The serum levels of histamine, IgE, TSLP, TNF-α, IL-6, and IL-4 were suppressed following treatment with pCA. Conclusion: This study suggests that pCA has the potential to improve AD by suppressing TSLP as well as inflammatory cytokines via blocking of caspase-1/NF-κB signal cascade.

Green tea polyphenol (-)-epigallocatechin-3-gallate prevents ultraviolet-induced apoptosis in PC12 cells

  • Woo, Su-Mi;Kim, Yoon-Jung;Cai, Bangrong;Park, Sam-Young;Kim, Young;Kim, Ok Joon;Kang, In-Chol;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.179-189
    • /
    • 2020
  • Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a potent antioxidant with protective effects against neurotoxicity. However, it is currently unclear whether EGCG protects neuronal cells against radiation-induced damage. Therefore, the objective of this study was to investigate the effects of EGCG on ultraviolet (UV)-induced oxidative stress and apoptosis in PC12 cells. The effects of UV irradiation included apoptotic cell death, which was associated with DNA fragmentation, reactive oxygen species (ROS) production, enhanced caspase-3 and caspase-9 activity, and poly (ADP-ribose) polymerase cleavage. UV irradiation also increased the Bax/Bcl-2 ratio and mitochondrial pathway-associated cytochrome c expression. However, pretreatment with EGCG before UV exposure markedly decreased UV-induced DNA fragmentation and ROS production. Furthermore, the UV irradiation-induced increase in Bax/Bcl-2 ratio, cytochrome c upregulation, and caspase-3 and caspase-9 activation were each ameliorated by EGCG pretreatment. Additionally, EGCG suppressed UV-induced phosphorylation of p38 and rescued UV-downregulated phosphorylation of ERK. Taken together, these results suggest that EGCG prevents UV irradiation-induced apoptosis in PC12 cells by scavenging ROS and inhibiting the mitochondrial pathways known to play a crucial role in apoptosis. In addition, EGCG inhibits UV-induced apoptosis via JNK inactivation and ERK activation in PC12 cells. Thus, EGCG represents a potential neuroprotective agent that could be applied to prevent neuronal cell death induced by UV irradiation.