• Title/Summary/Keyword: Caspase-1

Search Result 1,284, Processing Time 0.026 seconds

Caspase-3 Specifically Cleaves $p21^{WAF1/CIP1}$ in the Earlier Stage of Apoptosis in SK-HEP-1 Human Hepatoma Cells

  • Park, Jeong-Ae;Kim, Kyu-Won;Kim, Shin-Il;Lee, Seung-Ki
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.231-243
    • /
    • 1998
  • In the present study, we provide evidence that ginsenoside $Rh_2$ (G-$Rh_2$) as well as staurosporine induces apoptosis of human hepatoma SK-HEP-1 cells by caspase 3-mediated processing of $p21^{WAFI/CIPI}$ in the early stage of apoptosls. Immunoblottings showed that G-$Rh_2$ as well as statrosporine induced the processing of caspase-3 to an active form, pl7. In stable Bcl-2 transfectants however, G-$Rh_2$ induced DNA fragmentation, while staurosporine did not. In the early stage of apoptosis, $p21^{WAFI/CIPI}$ was detected to undergo proteolytic processing specifically conducted by caspase-3. $p21^{WAFI/CIPI}$ translated in vitro was cleaved into a p14 fragment, when incubated with cell extracts obtained from either G-$Rh_2$- or staurosporine-treated cells. Cleavage was equally inhibited in both cases by adding Ac-DEVD-cho, a specific caspase-3 inhibitor, but not by Ac-YVkD-cho, a specific caspase-l inhibitor. Similarly, $p21^{WAFI/CIPI}$ was efficiently leaved by recombinant caspase-3 overexpressed in E. coli. Moreover, the endogenous $p21^{WAFI/CIPI}$ of untreated-cell extracts was also cleaved by recombinant caspase-3. Mutation analysis allowed identification of two caspase-3 cleavage sites, $DHVD^{112}$/L and $SMTD^{149}$/F, which are located within, or near the interaction domains for cyclins, Cdks, and PCNA. Taken together, these results show that G-$Rh_2$ as well as staurosporine increases caspase-3 activity, which in turn directly cleaves $p21^{WAFI/CIPI}$ resulting in elevation of Cdk kinase activity in the early stages of apoptosis. We propose that proteolytic cleavage of $p21^{WAFI/CIPI}$ is a functionally relevant event that allows unleashing the cyclin/Cdk activity from the inhibitor seen in the earlier stage of apoptosis, the event of which may be associated with the triggering mechanism for the execution of apoptosis.

  • PDF

Suppressing NF-κB/Caspase-1 Activation is a Mechanism Involved in the Anti-inflammatory Effect of Rubi Fructus in Stimulated HMC-1 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.137-143
    • /
    • 2023
  • Inflammation plays an important role in immune system's response to tissue injury and biological stimuli. However, excessive inflammation can cause tissue damage. Therefore, the development of naturally derived anti-inflammatory agents have received broad attention. In this study, we investigated the anti-inflammatory mechanism of Rubi Fructus (RF) extract on the mast cell-mediated inflammatory response. To determine the regulatory mechanism of RF in inflammatory reaction, we evaluated the effects of RF on secretion of interleukin (IL)-8, IL-6 and tumor necrosis factor (TNF)-α and activation of nuclear factor-κB (NF-κB) and caspase-1 in activated human mast cells-1 (HMC-1). The results showed that RF attenuated IL-8, IL-6 and TNF-α secretion in a concentration-dependent manner. Moreover, RF significantly attenuated caspase-1and NF-κB activation in activated HMC-1. Conclusively, the present results provide evidence that RF may be a promising agent for anti-inflammatory therapy.

Biochemical Changes in the Tissue of Mice Irradiated with LINAC (선형가속기를 이용한 방사선조사에서 생쥐조직의 생화학적 변화)

  • Choi, Seong-Kwan
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.661-666
    • /
    • 2016
  • In this study, a linear accelerator (LINAC) through 3 Gy of radiation per body irradiated mice of the small intestine and the liver to produce in order to protect the cells after radiation exposure that caspase (caspase 3 &caspase 9) and NO (nitric oxide), and looked like to know cytokine of IL-6 and TNF-${\alpha}$, the result is as follows. First, caspase 3 & caspase 9 showed a noticeable increase in the radiation group than in the control group both small intestine and liver tissues (P <0.001). Second, NO are both intestine and liver tissue showed a marked increase in the radiation group than in the control group (P <0.001). Third, one of Cytokine IL-6 and TNF-${\alpha}$ showed a significant increase in the irradiated group than the control group both small intestine and liver tissues (P <0.001).

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

Anti-cancer Effects of Palbohoichoon-tang on Neuroblastoma Cells (신경아세포종에 대한 팔보회춘탕(八寶廻春湯)의 항암 효과)

  • An, Jung-Hwan;Cho, Mun-Young;Woo, Chan;Shin, Yong-Jin;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • Objectives : To investigate the anti-cancer effect of Palbohoichoon-tang (PBHCT) extracts. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were microscopically analyzed after staining with $10{\mu}M$ 2-[4-amidinophenyl]-6-indolecarbamidine dihydrochloride (DAPI) and TUNEL. We also analyzed expression of Bcl2, $Bcl_{xL}$, Bax, procaspase-3, procaspase-9, and procyclic acidic repetitive protein (PARP) by western blot method. Results : Observations showed that PBHCT induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. Western blot analysis of total cell lysates revealed that the PBHCT induced cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). In addition, PBHCT dose-dependently increased the activity of caspase-9, caspase-3 and PARP-1. Furthermore, PBHCT reduced anti-apoptotic Bcl2, $Bcl_{xL}$ expression which contributed to the loss of mitochondrial membrane potential and the activations of caspase-9 and caspase-3. Conclusions : These findings suggest that PBHCT exerts anti-cancer effects on human neuroblastoma SH-SY5Y cells by inducing apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl2 and $Bcl_{xL}$, up-regulation of pro-apoptotic proteins such as Bax, and activation of caspase cascades and PARP-1.

Neonatal Rat Necrotizing Enterocolitis Model Adopting Oral Endotoxin and Hypoxia Exhibits Increased Apoptosis through Caspase-3 Activation (경구 내독소와 저산소로 유발된 신생쥐의 괴사성 장염모델에서 caspase-3 활성화를 통한 세포자멸사의 증가)

  • Lee, Yun-Kyoung;Kim, Ee-Kyung;Kim, Ji-Eun;Kim, Yoon-Joo;Son, Se-Hyung;Kim, Han-Suk;Kim, Beyong-Il;Choi, Jung-Hwan
    • Neonatal Medicine
    • /
    • v.17 no.1
    • /
    • pp.44-52
    • /
    • 2010
  • Purpose : The aim of this study was to develop a model for necrotizing enterocolitis (NEC) in the neonatal rat using endotoxin and hypoxia, a plausible insult in a neonatal intensive care and to investigate the role of apoptosis as the underlying mechanism. Methods : Newborn rats were given oral endotoxin and intermittent 8% hypoxia$\pm$caspase inhibitor. The intestinal histology was evaluated using hematoxylin-eosin staining. Apoptosis was analyzed with TUNEL staining and by measuring the caspase 3 activity in the intestinal lysates. IEC-6 cells were assessed for apoptosis and the expression of Bax, Bcl-2, Fas and FasL was measured after treatment with endotoxin and hypoxia. Results : Oral endotoxin (5 mg/kg) and exposure to 8% hypoxia of 60-min duration twice induced human NEC-like lesions in the rat intestine. Intestinal tissue revealed increased apoptosis and caspase-3 activity. After caspase inhibitor treatment, the grades of both apoptosis and NEC were significantly reduced. IEC-6 cells exhibited increased apoptosis and caspase 3 activity after endotoxin and hypoxia treatment and significantly increased Bax/Bcl- 2 ratio compared to control cells. Conclusion : This neonatal rat model of NEC which was induced by oral endotoxin and intermittent hypoxia showed increased apoptosis of intestinal epithelial cells that was mediated by caspase 3 activation. Our model has a advantage in the study of NEC because the use of much more clinically plausible insults may provide a suitable model for the investigation of its pathophysiology and therapeutic trials.

Cysteine Participates in Cell Proliferation by Inhibiting Caspase3-like Death Protease

  • Lee, Sang-Han;Hong, Soon-Duck
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 1999
  • Reduced thiols were important compounds for the maintenance of leukemia and lymphoma cell survival (and growth). In the course of examining the microenvirn-mental effects on lymphoma and leukemia cell growth, we found that cysteine suppressed apoptosis in these cells. In a present study, in order to investigate the role of cystein on the suppression of apoptotic cell death, we used CS21, P388, and L1210 cell lines. The addition of BSO, an inhibitor of glutathione synthase, induced apoptosis of these cells by blocking the cellular uptake of cysteine in CS21 cells. Although L1210 cells underwent apoptosis without thiol compounds, the addition of these compounds suppressed the apoptosis and promoted the growth or L1210 cells. When specific inhibitors of caspase3-like proteases, but not caspase1-like proteases, were activated during the L1210 cell apoptosis but the addition of thiol compounds suppressed the activation of caspase3-like proteases. These results suggest that reduced thiols including cysteine play an important role in the suppression of cell apoptosis by inhibiting the activation of caspase3-like proteases.

  • PDF

Cytosine Arabinoside-Induced PC12 Cell Death Pathway (Cytosine Arabinoside 유도된 PC12 세포의 사망 경로)

  • Yang, Bo-Gee;Yang, Byung-Hwan;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.2
    • /
    • pp.219-226
    • /
    • 1998
  • Cytosine arabinoside(AraC) inhibits DNA synthesis and ${\beta}$-DNA polymerase, an enzyme involved in DNA repair. This, a potent antimitotic agent, is clinically used as an anticancer drug with side effect of severe neurotoxicity. Earlier reports suggested that inhibition of neuronal survival by AraC in sympathetic neuron may be due to the inhibition of a 2'-deoxycytidine-dependent process that is independent of DNA synthesis or repair and AraC induced a signal that is triggers a cascade of new mRNA and protein synthesis, leading to apoptotic cell death in cultured cerebellar granule cells. The present study would suggest whether caspase family(ICE/CED-3-like protease) involved in AraC-induced apoptosis pathway of PC12 cells. It was observed that treatment of PC12 cells with AraC led to decrease of viability by MTT assay and morphology changes, which did not suggest that AraC induced apoptosis in PC12 cells. The mRNA of caspase-1/caspase-3 were expressed in PC12 cells constitutively, and AraC did not activate caspase family. These results suggest that caspase-1/caspase-3 may not be required for AraC-induced cell death pathway in PC12 cells.

  • PDF

Induction of Apoptotic Cell Death by Aqueous Extract of Cordyceps militaris Through Activation of Caspase-3 in Human Hepatocarcinoma Hep3B Cells (Hep3B 간암세포에서 Caspase-3 활성화를 통한 동충하초 열수추출물의 Apoptosis 유도에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Seo, Sang-Ho;Hong, Sang-Hoon;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.714-720
    • /
    • 2008
  • Cordyceps militaris is a medicinal fungus which has been used for patient suffering from cancer in Oriental medicine. It was previously reported that C. militaris extracts are capable of inhibiting tumor growth and inducing apoptosis; however, the anti-poliferative effects of human cancer cells have been poorly understood. In this study, to elucidate the anti-cancer mechanisms of human cancer cells by treatment with aqueous extract of C. militaris (AECM), we investigated the anti-proliferative effects of AECM in human hepatocarcinoma Hep3B cells. AECM treatment inhibited the growth of Hep3B cells and induced the apoptotic cell death in a concentration-dependent manner such as formation of apoptotic bodies and increased populations of apoptotic-sub G1 phase. The induction of apoptosis by AECM was connected with a proteolytic activation of caspase-3 and caspase-8. and concomitant degradation of poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin proteins. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited AECM-induced apoptosis demonstrating the important role of caspase-3 in the bserved cytotoxic effect. Taken together, these findings suggest that AECM-induced inhibition of human hepatocarcinoma cell proliferation is associated with the induction of apoptotic cell death via activation of caspase-3 and C. militaris may have therapeutic potential in human cancer.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.