• 제목/요약/키워드: Casein mRNA Expression

검색결과 28건 처리시간 0.026초

Effect of hyperthermia on cell viability, amino acid transfer, and milk protein synthesis in bovine mammary epithelial cells

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Hu, Rui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.110-122
    • /
    • 2022
  • The reduction of milk yield caused by heat stress in summer is the main condition restricting the economic benefits of dairy farms. To examine the impact of hyperthermia on bovine mammary epithelial (MAC-T) cells, we incubated the MAC-T cells at thermal-neutral (37℃, CON group) and hyperthermic (42℃, HS group) temperatures for 6 h. Subsequently, the cell viability and apoptotic rate of MAC-T cells, apoptosis-related genes expression, casein and amino acid transporter genes, and the expression of the apoptosis-related proteins were examined. Compared with the CON group, hyperthermia significantly decreased the cell viability (p < 0.05) and elevated the apoptotic rate (p < 0.05) of MAC-T cells. Moreover, the expression of heat shock protein (HSP)70, HSP90B1, Bcl-2-associated X protein (BAX), Caspase-9, and Caspase-3 genes was upregulated (p < 0.05). The expression of HSP70 and BAX (pro-apoptotic) proteins was upregulated (p < 0.05) while that of B-cell lymphoma (BCL)2 (antiapoptotic) protein was downregulated (p < 0.05) by hyperthermia. Decreased mRNA expression of mechanistic target of rapamycin (mTOR) signaling pathway-related genes, amino acid transporter genes (SLC7A5, SLC38A3, SLC38A2, and SLC38A9), and casein genes (CSNS1, CSN2, and CSN3) was found in the heat stress (HS) group (p < 0.05) in contrast with the CON group. These findings illustrated that hyperthermia promoted cell apoptosis and reduced the transport of amino acids into cells, which inhibited the milk proteins synthesis in MAC-T cells.

Feeding strategies alter gene expression of the calpain system and meat quality in the longissimus muscle of Braford steers

  • Coria, Maria Sumampa;Reineri, Pablo Sebastian;Pighin, Dario;Barrionuevo, Maria Guadalupe;Carranza, Pedro Gabriel;Grigioni, Gabriela;Palma, Gustavo Adolfo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.753-762
    • /
    • 2020
  • Objective: The aim of the present study was to determine the effect of supplementing pasture-finished steers with corn silage on the expression level of the calpain system proteins and beef tenderization. Methods: Thirty Braford steers grazing on summer pasture were used for the study. For 120 days fifteen animals were supplemented with corn silage at 1% of body weight per head per day (Suppl) whereas the remaining 15 steers only received pasture (Contr). Carcass and meat traits were evaluated and compared between groups. Gene expression and activities of proteases (calpain 1 and calpain 2) and inhibitor (calpastatin) were measured using real-time polymerase chain reaction and casein zymography. Results: Carcass and meat traits were significantly different between feeding systems. Supplemented steers showed higher hot carcass weight (p<0.01), fat content (p = 0.02), and Warner-Bratzler shear force (p = 0.03). Furthermore, the control group showed higher protease:inhibitor ratios, at mRNA (p = 0.01) and protein levels (p<0.10). Warner-Bratzler shear force and mRNA calpains:calpastatin ratio were associated in both feeding systems (p<0.01). Conclusion: Based on the results obtained in the study, beef tenderness differences among finishing strategies could be modulated through differential expression of the calpain system proteins.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

팔물탕(八物湯) 복용이 산후 유즙분비 관련인자에 미치는 영향 (Effect on Factors Related Lactation after Administration of Palmul-tang)

  • 송윤희;김태희
    • 대한한방부인과학회지
    • /
    • 제23권1호
    • /
    • pp.12-29
    • /
    • 2010
  • Purpose: This study was conducted to investigate the effect on factors related lactation after administration of Palmul-tang in postpartum C57BL/6N mice. Materials and Methods: Experimental groups were divided into control group post-par group and pre-par group. Pre-par and post-par group were administered Palmul-tang(p.o) twice a week for 4 weeks or 3 weeks respectively. Control group was administered normal saline for 3 weeks. Then we observed morphological change, immunohistochemical density and milk protein gene expression of factors related lactation within mammary gland of postpartum mice. Results: In post-par and pre-par groups, adipose tissue within mammary gland significantly decreased, and ductal branch and alveoli prominently developed than that of control group at 1~3 weeks after administraion of Palmul-tang. In post-par and pre-par groups, density of immunoreactivity on oxytocin, prolactin, estrogen and progesterone receptors in mammary glandular tissue significantly increased than that of control group. mRNA expression of $\beta$-casein and placental lactogen (PL)-1 in post-par group was more increased than that of control and pre-par groups. Conclusion: These results suggest that Palmul-tang significantly improved factors related lactation at postpartum period.

Development of a Human Mammary Epithelial Cell Culture Model for Evaluation of Drug Transfer into Milk

  • Kimura Soichiro;Morimoto Keiko;Okamoto Hiroshi;Ueda Hideo;Kobayashi Daisuke;Kobayashi Jun;Morimoto Yasunori
    • Archives of Pharmacal Research
    • /
    • 제29권5호
    • /
    • pp.424-429
    • /
    • 2006
  • In the present study, a human mammary epithelial cell (HMEC) culture model was developed to evaluate the potential involvement of carrier-mediated transport systems in drug transfer into milk. Trypsin-resistant HMECs were seeded on $Matrigel^{circledR}-coated$ filters to develop monolayers of functionally differentiated HMEC. Expression of the specific function of HMEC monolayers was dependent of the number of trypsin treatments. Among the monolayers with different numbers of treatment (treated 1 to 3 times), the monolayer treated 3 times (3-t-HMEC monolayer) showed the highest maximal transepithelial resistance and expression of $\beta-casein$ mRNA as an index of differentiation. Transport of tetraethylammonium (TEA) across the 3-t-HMEC monolayer in the basolateral-to-apical direction was significantly higher than that in the apical-to-basolateral direction (p<0.05), whereas such directionality was not observed for p-aminohippurate, suggesting the existence of organic cation transporters, but not organic anion transporters. In fact, expression of mRNAs of human organic cation transporter (OCT) 1 and 3 were detected in the 3-t-HMEC monolayer. These results indicate that the 3-t-HMEC monolayer is potentially useful for the evaluation of carrier-mediated secretion of drugs including organic cations into human milk.

Animal protein hydrolysate reduces visceral fat and inhibits insulin resistance and hepatic steatosis in aged mice

  • Su-Kyung Shin;Ji-Yoon Lee;Heekyong R. Bae;Hae-Jin Park;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • 제18권1호
    • /
    • pp.46-61
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: An increasing life expectancy in society has burdened healthcare systems substantially because of the rising prevalence of age-related metabolic diseases. This study compared the effects of animal protein hydrolysate (APH) and casein on metabolic diseases using aged mice. MATERIALS/METHODS: Eight-week-old and 50-week-old C57BL/6J mice were used as the non-aged (YC group) and aged controls (NC group), respectively. The aged mice were divided randomly into 3 groups (NC, low-APH [LP], and high-APH [HP] and fed each experimental diet for 12 weeks. In the LP and HP groups, casein in the AIN-93G diet was substituted with 16 kcal% and 24 kcal% APH, respectively. The mice were sacrificed when they were 63-week-old, and plasma and hepatic lipid, white adipose tissue weight, hepatic glucose, lipid, and antioxidant enzyme activities, immunohistochemistry staining, and mRNA expression related to the glucose metabolism on liver and muscle were analyzed. RESULTS: Supplementation of APH in aging mice resulted in a significant decrease in visceral fat (epididymal, perirenal, retroperitoneal, and mesenteric fat) compared to the negative control (NC) group. The intraperitoneal glucose tolerance test and area under the curve analysis revealed insulin resistance in the NC group, which was alleviated by APH supplementation. APH supplementation reduced hepatic gluconeogenesis and increased glucose utilization in the liver and muscle. Furthermore, APH supplementation improved hepatic steatosis by reducing the hepatic fatty acid and phosphatidate phosphatase activity while increasing the hepatic carnitine palmitoyltransferase activity. Furthermore, in the APH supplementation groups, the red blood cell (RBC) thiobarbituric acid reactive substances and hepatic H2O2 levels decreased, and the RBC glutathione, hepatic catalase, and glutathione peroxidase activities increased. CONCLUSIONS: APH supplementation reduced visceral fat accumulation and alleviated obesity-related metabolic diseases, including insulin resistance and hepatic steatosis, in aged mice. Therefore, high-quality animal protein APH that reduces the molecular weight and enhances the protein digestibility-corrected amino acid score has potential as a dietary supplement for healthy aging.

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.