Browse > Article
http://dx.doi.org/10.5187/jast.2021.e128

Effect of hyperthermia on cell viability, amino acid transfer, and milk protein synthesis in bovine mammary epithelial cells  

Zhou, Jia (Animal Nutrition Institute, Sichuan Agricultural University)
Yue, Shuangming (Department of Bioengineering, Sichuan Water Conservancy Vocation College)
Xue, Benchu (Animal Nutrition Institute, Sichuan Agricultural University)
Wang, Zhisheng (Animal Nutrition Institute, Sichuan Agricultural University)
Wang, Lizhi (Animal Nutrition Institute, Sichuan Agricultural University)
Peng, Quanhui (Animal Nutrition Institute, Sichuan Agricultural University)
Hu, Rui (Animal Nutrition Institute, Sichuan Agricultural University)
Xue, Bai (Animal Nutrition Institute, Sichuan Agricultural University)
Publication Information
Journal of Animal Science and Technology / v.64, no.1, 2022 , pp. 110-122 More about this Journal
Abstract
The reduction of milk yield caused by heat stress in summer is the main condition restricting the economic benefits of dairy farms. To examine the impact of hyperthermia on bovine mammary epithelial (MAC-T) cells, we incubated the MAC-T cells at thermal-neutral (37℃, CON group) and hyperthermic (42℃, HS group) temperatures for 6 h. Subsequently, the cell viability and apoptotic rate of MAC-T cells, apoptosis-related genes expression, casein and amino acid transporter genes, and the expression of the apoptosis-related proteins were examined. Compared with the CON group, hyperthermia significantly decreased the cell viability (p < 0.05) and elevated the apoptotic rate (p < 0.05) of MAC-T cells. Moreover, the expression of heat shock protein (HSP)70, HSP90B1, Bcl-2-associated X protein (BAX), Caspase-9, and Caspase-3 genes was upregulated (p < 0.05). The expression of HSP70 and BAX (pro-apoptotic) proteins was upregulated (p < 0.05) while that of B-cell lymphoma (BCL)2 (antiapoptotic) protein was downregulated (p < 0.05) by hyperthermia. Decreased mRNA expression of mechanistic target of rapamycin (mTOR) signaling pathway-related genes, amino acid transporter genes (SLC7A5, SLC38A3, SLC38A2, and SLC38A9), and casein genes (CSNS1, CSN2, and CSN3) was found in the heat stress (HS) group (p < 0.05) in contrast with the CON group. These findings illustrated that hyperthermia promoted cell apoptosis and reduced the transport of amino acids into cells, which inhibited the milk proteins synthesis in MAC-T cells.
Keywords
Hyperthermia; Heat stress; Apoptosis; Milk protein synthesis; Amino acid transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang C, Liu HY, Wang YM, Yang ZQ, Liu JX, Wu YM, et al. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J Dairy Sci. 2010;93:3661-70. https://doi.org/10.3168/jds.2009-2750   DOI
2 Wang J, Jin Y, Wu S, Yu H, Zhao Y, Fang H, et al. Deoxynivalenol induces oxidative stress, inflammatory response and apoptosis in bovine mammary epithelial cells. J Anim Physiol Anim Nutr. 2019;103:1663-74. https://doi.org/10.1111/jpn.13180   DOI
3 Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem. 2001;276:11615-23. https://doi.org/10.1074/jbc.M010810200   DOI
4 Leber B, Lin J, Andrews DW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis. 2007;12:897-911. https://doi.org/10.1007/s10495-007-0746-4   DOI
5 Tsiplakou E, Flemetakis E, Kouri ED, Karalias G, Sotirakoglou K, Zervas G. The effect of long-term under- and overfeeding on the expression of six major milk proteins' genes in the mammary tissue of goats. J Anim Physiol Anim Nutr. 2016;100:422-30. https://doi.org/10.1111/jpn.12394   DOI
6 Galadari S, Thayyullathil F, Hago A, Patel M, Chathoth S. Akt depletion is an important determinant of L929 cell death following heat stress. Ann N Y Acad Sci. 2008;1138:385-92. https://doi.org/10.1196/annals.1414.040   DOI
7 Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572-83. https://doi.org/10.1038/nrc3557   DOI
8 Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The human SLC7A5 (LAT1): the intriguing histidine/large neutral amino acid transporter and its relevance to human health. Front Chem. 2018;6:243. https://doi.org/10.3389/fchem.2018.00243   DOI
9 Cai M, Hu Y, Zheng T, He H, Xiao W, Liu B, et al. MicroRNA-216b inhibits heat stress-induced cell apoptosis by targeting Fas in bovine mammary epithelial cells. Cell Stress Chaperones. 2018;23:921-31. https://doi.org/10.1007/s12192-018-0899-9   DOI
10 Gao ST, Guo J, Quan SY, Nan XM, Fernandez MVS, Baumgard LH, et al. The effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy Sci. 2017;100:5040-9. https://doi.org/10.3168/jds.2016-11913   DOI
11 Lin Y, Duan X, Lv H, Yang Y, Liu Y, Gao X, et al. The effects of L-type amino acid transporter 1 on milk protein synthesis in mammary glands of dairy cows. J Dairy Sci. 2018;101:1687-96. https://doi.org/10.3168/jds.2017-13201   DOI
12 Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch. 2004;447:784-95. https://doi.org/10.1007/s00424-003-1117-9   DOI
13 Cowley FC, Barber DG, Houlihan AV, Poppi DP. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J Dairy Sci. 2015;98:2356-68. https://doi.org/10.3168/jds.2014-8442   DOI
14 St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci. 2003;86:E52-77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5   DOI
15 Hempel S, Menz C, Pinto S, Galan E, Janke D, Estelles F, et al. Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts. Earth Syst Dyn. 2019;10:859-84. https://doi.org/10.5194/esd-10-859-2019   DOI
16 Beede DK, Collier RJ. Potential nutritional strategies for intensively managed cattle during thermal stress. J Anim Sci. 1986;62:543-54. https://doi.org/10.2527/jas1986.622543x   DOI
17 Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, et al. Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning. FASEB J. 2018;32:5602-11. https://doi.org/10.1096/fj.201800240R   DOI
18 Li L, Sun Y, Wu J, Li X, Luo M, Wang G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress Chaperones. 2015;20:381-9. https://doi.org/10.1007/s12192-014-0559-7   DOI
19 Hirano S. Western blot analysis. Methods Mol Biol. 2012;926:87-97. https://doi.org/10.1007/978-1-62703-002-1_6   DOI
20 Sakatani M. Effects of heat stress on bovine preimplantation embryos produced in vitro. J Reprod Dev. 2017;63:347-52. https://doi.org/10.1262/jrd.2017-045   DOI
21 Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427-33. https://doi.org/10.1016/j.tibs.2010.05.003   DOI
22 Sokolov AM, Holmberg JC, Feliciano DM. The amino acid transporter Slc7a5 regulates the mTOR pathway and is required for granule cell development. Hum Mol Genet. 2020;29:3003-13. https://doi.org/10.1093/hmg/ddaa186   DOI
23 Broer S, Palacin M. The role of amino acid transporters in inherited and acquired diseases. Biochem J. 2011;436:193-211. https://doi.org/10.1042/BJ20101912   DOI
24 Nie C, He T, Zhang W, Zhang G, Ma X. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci. 2018;19:954. https://doi.org/10.3390/ijms19040954   DOI
25 Zou Y, Shao J, Li Y, Zhao FQ, Liu JX, Liu H. Protective effects of inorganic and organic selenium on heat stress in bovine mammary epithelial cells. Oxid Med Cell Longev. 2019;2019:1503478. https://doi.org/10.1155/2019/1503478   DOI
26 Dado-Senn B, Skibiel AL, Fabris TF, Dahl GE, Laporta J. Dry period heat stress induces microstructural changes in the lactating mammary gland. PLOS ONE. 2019;14:e0222120. https://doi.org/10.1371/journal.pone.0222120   DOI
27 Liu Z, Ezernieks V, Wang J, Arachchillage NW, Garner JB, Wales WJ, et al. Heat stress in dairy cattle alters lipid composition of milk. Sci Rep. 2017;7:961. https://doi.org/10.1038/s41598-017-01120-9   DOI
28 Noftsger S, St-Pierre NR. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J Dairy Sci. 2003;86:958-69. https://doi.org/10.3168/jds.S0022-0302(03)73679-0   DOI
29 Dong X, Zhou Z, Saremi B, Helmbrecht A, Wang Z, Loor JJ. Varying the ratio of Lys: Met while maintaining the ratios of Thr: Phe, Lys: Thr, Lys: His, and Lys: Val alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci. 2018;101:1708-18. https://doi.org/10.3168/jds.2017-13351   DOI
30 Gao ST, Ma L, Zhou Z, Zhou ZK, Baumgard LH, Jiang D, et al. Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol Genomics. 2019;51:400-9. https://doi.org/10.1152/physiolgenomics.00039.2019   DOI
31 Riley LG, Gardiner-Garden M, Thomson PC, Wynn PC, Williamson P, Raadsma HW, et al. The influence of extracellular matrix and prolactin on global gene expression profiles of primary bovine mammary epithelial cells in vitro. Anim Genet. 2010;41:55-63. https://doi.org/10.1111/j.1365-2052.2009.01964.x   DOI
32 Baruselli PS, Ferreira RM, Vieira LM, Souza AH, Bo GA, Rodrigues CA. Use of embryo transfer to alleviate infertility caused by heat stress. Theriogenology. 2020;155:1-11. https://doi.org/10.1016/j.theriogenology.2020.04.028   DOI
33 West JW. Effects of heat-stress on production in dairy cattle. J Dairy Sci. 2003;86:2131-44. https://doi.org/10.3168/jds.S0022-0302(03)73803-X   DOI
34 Wheelock JB, Rhoads RP, VanBaale MJ, Sanders SR, Baumgard LH. Effects of heat stress on energetic metabolism in lactating Holstein cows. J Dairy Sci. 2010;93:644-55. https://doi.org/10.3168/jds.2009-2295   DOI
35 Guo Z, Gao S, Ouyang J, Ma L, Bu D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals. 2021;11:726. https://doi.org/10.3390/ani11030726   DOI
36 Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40:253-66. https://doi.org/10.1016/j.molcel.2010.10.006   DOI
37 Zhong W, Shen J, Liao X, Liu X, Zhang J, Zhou C, et al. Camellia (Camellia oleifera Abel.) seed oil promotes milk fat and protein synthesis-related gene expression in bovine mammary epithelial cells. Food Sci Nutr. 2020;8:419-27. https://doi.org/10.1002/fsn3.1326   DOI
38 Zhuo Y, Hua L, Feng B, Jiang X, Li J, Jiang D, et al. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. EBioMedicine. 2019;41:623-35. https://doi.org/10.1016/j.ebiom.2019.02.020   DOI
39 Lord-Fontaine S, Averill-Bates DA. Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: protection by glucose. Free Radic Biol Med. 2002;32:752-65. https://doi.org/10.1016/S0891-5849(02)00769-4   DOI
40 Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231-41. https://doi.org/10.1038/nrm2312   DOI
41 Stankiewicz AR, Lachapelle G, Foo CPZ, Radicioni SM, Mosser DD. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem. 2005;280:38729-39. https://doi.org/10.1074/jbc.M509497200   DOI
42 Li L, Wang Y, Li C, Wang G. Proteomic analysis to unravel the effect of heat stress on gene expression and milk synthesis in bovine mammary epithelial cells. Anim Sci J. 2017;88:2090-9. https://doi.org/10.1111/asj.12880   DOI
43 Rius AG. Invited review: adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Appl Anim Sci. 2019;35:39-48. https://doi.org/10.15232/aas.2018-01805   DOI
44 Collier RJ, Stiening CM, Pollard BC, VanBaale MJ, Baumgard LH, Gentry PC, et al. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J Anim Sci. 2006;84:E1-13. https://doi.org/10.2527/2006.8413_supplE1x   DOI
45 Roth Z. Physiology and endocrinology symposium: cellular and molecular mechanisms of heat stress related to bovine ovarian function. J Anim Sci. 2015;93:2034-44. https://doi.org/10.2527/jas.2014-8625   DOI
46 Lee HY, Heo YT, Lee SE, Hwang KC, Lee HG, Choi SH, et al. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells. J Dairy Sci. 2013;96:3835-9. https://doi.org/10.3168/jds.2012-5945   DOI
47 Li C, Wang Y, Li L, Han Z, Mao S, Wang G. Betaine protects against heat exposure-induced oxidative stress and apoptosis in bovine mammary epithelial cells via regulation of ROS production. Cell Stress Chaperones. 2019;24:453-60. https://doi.org/10.1007/s12192-019-00982-4   DOI
48 Liao XD, Zhou CH, Zhang J, Shen JL, Wang YJ, Jin YC, et al. Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells. Asian-Australas J Anim Sci. 2020;33:1012-22. https://doi.org/10.5713/ajas.19.0315   DOI
49 Pate RT, Luchini D, Murphy MR, Cardoso FC. Effects of rumen-protected methionine on lactation performance and physiological variables during a heat stress challenge in lactating Holstein cows. J Dairy Sci. 2020;103:2800-13. https://doi.org/10.3168/jds.2019-17305   DOI
50 Yue S, Wang Z, Wang L, Peng Q, Xue B. Transcriptome functional analysis of mammary gland of cows in heat stress and thermoneutral condition. Animals. 2020;10:1015. https://doi.org/10.3390/ani10061015   DOI
51 Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. J Biosci. 2007;32:595-610. https://doi.org/10.1007/s12038-007-0059-3   DOI
52 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262   DOI
53 Wang Y, Yang C, Elsheikh NAH, Li C, Yang F, Wang G, et al. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging (Albany NY). 2019;11:5535-47. https://doi.org/10.18632/aging.102136   DOI
54 Hu L, Chen Y, Cortes IM, Coleman DN, Dai H, Liang Y, et al. Supply of methionine and arginine alters phosphorylation of mechanistic target of rapamycin (mTOR), circadian clock proteins, and α-s1-casein abundance in bovine mammary epithelial cells. Food Funct. 2020;11:883-94. https://doi.org/10.1039/c9fo02379h   DOI
55 Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci. 2019;102:2469-80. https://doi.org/10.3168/jds.2018-15219   DOI
56 Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD. Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ. 2009;16:638-47. https://doi.org/10.1038/cdd.2008.189   DOI
57 Liu HY, Zhao K, Zhou MM, Wang C, Ye JA, Liu JX. Cytoprotection of vitamin E on hyperthermia-induced damage in bovine mammary epithelial cells. J Therm Biol. 2010;35:250-3. https://doi.org/10.1016/j.jtherbio.2010.05.010   DOI
58 Xiong Y, Yin Q, Jin E, Chen H, He S. Selenium attenuates chronic heat stress-induced apoptosis via the inhibition of endoplasmic reticulum stress in mouse granulosa cells. Molecules. 2020;25:557. https://doi.org/10.3390/molecules25030557   DOI
59 Hu H, Wang J, Gao H, Li S, Zhang Y, Zheng N. Heat-induced apoptosis and gene expression in bovine mammary epithelial cells. Anim Prod Sci. 2016;56:918-26. https://doi.org/10.1071/AN14420   DOI
60 Kumsta C, Chang JT, Schmalz J, Hansen M. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat Commun. 2017;8:14337. https://doi.org/10.1038/ncomms14337   DOI
61 Huynh HT, Robitaille G, Turner JD. Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res. 1991;197:191-9. https://doi.org/10.1016/0014-4827(91)90422-q   DOI