• Title/Summary/Keyword: Case-carburized

Search Result 29, Processing Time 0.022 seconds

Wear Characteristics of Carburized SCM415 Steel for Control Valve (컨트롤 밸브용 침탄 SCM415강의 마멸 특성)

  • Lee, Jeong Won;Na, Seong Hyeon;Yoon, Dong Hyun;Han, Sun Hyoung;Kim, Hyung Gong;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.873-878
    • /
    • 2016
  • SCM415 steel for the control valve undergoes wear because of continuous movement between the valve and valve case. The wear of the valve interrupts the performance of the valve, and decreases the service life. In this study, wear characteristics of the as-received and carburized SCM415 steels are evaluated. The wear tests are conducted for various temperatures and loads using a reciprocating wear tester. From these results, wear loss, specific wear rate, and coefficient of friction are analyzed. The wear mechanism was analyzed by SEM. The interaction effects between loads and temperatures on wear loss are determined for analysis of variance using MINITAB.

The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel. (AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향)

  • Jeong, Kwang-ho;Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

Microstructure and Effective Case Depth of the Vacuum Carburized Steels (진공침탄열처리강의 조직 및 유효경화깊이)

  • Choi, Y.T.;Byoun, S.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.32-40
    • /
    • 1992
  • This content is a part of the results of the study on the development of the vacuum carburizing technology. In this study the vacuum carburizing furnace being used was the furnace that developed through the joint project between KIMM and Kyung-Pook Heat Treating Co. from June 1988 to Nov. 1990. And the used carburizing gas was the propane gas and the introducing methods of the gas applied two methods such as pulse and constant pressure. By this study we established the basis of the furnace manufacturing technology and of the processing technology in the vacuum carburizing. Above all in this work there are notable meanings in a viewpoint of the foremost research in home. Hereafter, we are going to industrialize the vacuum carburizing technology by improving the results of the present work and by developing the process for the mass production.

  • PDF

Development of High Performance Low Pressure Carburizing System (Batch type 가스침탄 열처리로 국산화개발)

  • Kim, Won-Bae;Dong, Sang-Keun;Jang, Byoung-Lok;Han, Hyoung-Ki;Kim, Han-Suck;Cho, Han-Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.262-269
    • /
    • 2006
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching(LPC-GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

A Study on Vacuum Cargurizing Developments (진공침탄(眞空浸炭) 열처리(熱處理) 기술개발(技術開發)에 관한 연구(硏究))

  • Lee, Sang-Gil;Kang, Sun-Bae;Jung, Byong-Ho;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.3
    • /
    • pp.13-20
    • /
    • 1990
  • SCM 21 and D.P steel were carburized in vacuum using prophane at a temperature ranging from 1228k to 1308k under a gas pressure ranging from 21.3kpa to 61.8kpa, and the following results were obrained. 1) D.P. steel has considerable efficiency in depressing the grain growth during the high temperature carburizing and it has fine structure even at 1268k for 14.4ks when carburizied. Therefore this steel is expected to be suitable for vacuum carburizing at a high temperature. 2) Case depth was increased as the carburizing temperature increases and it was 3.2mm at max, temperature of 1308k, for max, time of 14.4ks and under max, pressure of 61.8kpa. Thus vacuum-carburizing was considered effective for the materials which need case depth, which is necessary for machine structure use. 3) The rate of case depth of SCM 21 was faster than D.P. steel under same carburizing conditions and the increasing rate of the case depth was constant. 4) Case depth was increased as the gas pressure becomes high under same carburizing temperature. 5) Case carbon concentration, $C_s$, of SCM 21 obeys to a formula, $$C_s=kt^{1/2}+C_0$$ Where k is $2.15{\times}10^{-2}$($wt%.S^{-1/2}$) and this value is a little bit lower than that of SNCM 815.

  • PDF

Characteristics of Plasma Carburizing Process in Surface Hardening of SCM415 Steel (플라즈마 침탄 공정을 이용한 SCM415강의 표면 경화 특성)

  • Kim, Dae-Wook;Kim, Dong-Won;Lim, Byeong-Soo;Kim, Seuk-Buom
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.707-713
    • /
    • 1998
  • The influence of plasma carburizing process on the surface hardness of SCM415 low-alloy steel (0.15% C) was investigated under the various process conditions of gas composition. gas pressure, plasma current density. temperature and time. The effective case depth was found to depend on the amount of methan gas containing carbon. thus the deepest case depth and the uniform hardeness were obtained with the 100% methan gas. The case depth increased with the plasma current density. The effective plasma carburizing temperature of SCM415 steel was found to be higher than 85$0^{\circ}C$, and the case depth was proportional to the square root of carburizing time under the same current density. The bending fatigue strength of the plasma carburized specimen is' higher than those of as- received specimen or reheat-quenched specimen.

  • PDF

Effect of Carbon Potential on the Carbide Formation and Pitting Fatigue Strength of Supercarburized Steel (고농도 침탄강의 탄화물 형성과 피팅 피로강도에 미치는 탄소 포텐셜의 영향)

  • So, Sangjin;Shin, Jungho;Lim, Jae-Won;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.113-123
    • /
    • 2016
  • In the present work, we investigated the effects of the carbon potential on the formation of carbide at the carburized surface and anti-pitting fatigue strength in the supercarburized steels. Two low carbon steels with different Cr concentrations were adopted and the repeated supercarburizing treatment carried out with the different carbon potential conditions. The microstructure and carbides at the supercarburized surface were observed by using optical microscope and scanning electron microscope. The microhardness test was performed and the hardness distribution and the effective case depth at the supercarburized surface were discussed. The roller pitting fatigue test was carried out and the fatigue strength was evaluated with different the carbon potential conditions. The microstructure of the fatigue specimen surface was observed by means of scanning electron microscope and scanning transmission electron microscope. Depending on the chemical composition of the steels and the carbon potential condition, the resistance of temper softening and pitting failure was influenced due to the carbide distribution and the formation of coarse network carbide. Thus, it was confirmed that the control of the carbide formation is a key factor to improve the anti-pitting fatigue strength in the supercarburized steels.

A Study on Setting up Condition of Treatment for Vacuum Carburizing (진공침탄을 위한 처리조건 설정에 관한 연구)

  • Lee, Sang-Gill;Kang, Sun-Bae;Jung, Byong-Ho;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.195-200
    • /
    • 1992
  • SCM 415 has been vacuum carburized in the carburizing pressure of 60-65kpa and the carburizing temperature of 1233k and 1273k after varied to 0-20 in the ratio of $N_2/C_3H_8$ and then diffusion treated for various times at 1123k. The results obtained from the experiment are as follows. 1. With increasing from 0 to 20 in ratio of $N_2/C_3H_8$ the sooting formation of surface after carburizing considerably decreased. 2. The hardness control and surface carbon content of carburizing surface has been modified by the addition of nitrogen to the propan. 3. The appoximate value of k is indirectry calculated at 1123k which results are obtained to $0.58{\times}10^{-2}(wt.%.S^{-1/2})$. 4. A great deal of propan by addition of nitrogen gas in carburizing gas was possible to saving without considerable change in case hardening depth. 5. The effective carburizing depth range is obtained to 0.8-1.1mm by diffusion temperature of 1123k after carburization at 1273k-3.6ks, and the surface hardness is increased as the increasing of $T_D/T_c$ in our experimental condition, and the maximum hardness as reachin distance from surface is decreased.

  • PDF

스테인레스강 Overlay 용접부의 Disbonding에 관한 연구 1

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.45-52
    • /
    • 1983
  • Many pressure vessels for the hot H$\sub$2//H$\sub$2/S service are made of 2+1/4Cr-1Mo steel with austenitic stainless steel overlay to combat agressive corrosion due to hydrogen sulfide. Hydrogen dissolves in to materials during operation, and sometimes gives rise to unfore-seeable damages. Appropriate precautions must, therefore, be taken to avoid the hydrogen induced damages in the design, fabrication and operation stage of such reactor vessels. Recently, hydrogeninduced cracking (or Disbonding) was found at the interface between base metal and stainless weld overlay of a desulfurizing reactor. Since the stainless steel overlay weld metal is subjected to thermal and internal-pressure loads in reactor operation, it is desirable for the overlay weld metal to have high strength and ductility from the stand point of structural safety. In section III of ASME Boiler and Pressure Vessel Code, Post-Weld Heat Treatment(PWHT) of more than one hour per inch at over 1100.deg. F(593.deg. C) is required for the weld joints of low alloy pressure vessel steels. This heat treatment to relieve stresses in the welded joint during construction of the pressure vessel is considered to cause sensitization of the overlay weld metal. The present study was carried out to make clear the diffusion of carbon migration by PWHT in dissimilar metal welded joint. The main conclusion reached from this study are as follows: 1) The theoretical analysis for diffusion of carbon in stainless steel overlay weld metal does not agree with Fick's 2nd law but the general law of molecular diffusion phenomenon by thermodynamic chemical potential. 2) In the stainless steel overlay welded joint, the PWHT at 720.deg. C for 10 hours causes a diffusion of carbon atoms from ferritic steel into austenitic steel according to the theoretical analysis for carbon migration and its experiment. 3) In case of PWHT at 720.deg. C for 10 hours, the micro-hardness of stainless steel weld metal in bonded zone increase very highly in the carburized layer with remarkable hardening than that of weld metal.

  • PDF