• 제목/요약/키워드: Case-based Reasoning System

검색결과 268건 처리시간 0.023초

Two-Step Filtering Datamining Method Integrating Case-Based Reasoning and Rule Induction

  • Park, Yoon-Joo;Chol, En-Mi;Park, Soo-Hyun
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2007년도 한국지능정보시스템학회
    • /
    • pp.329-337
    • /
    • 2007
  • Case-based reasoning (CBR) methods are applied to various target problems on the supposition that previous cases are sufficiently similar to current target problems, and the results of previous similar cases support the same result consistently. However, these assumptions are not applicable for some target cases. There are some target cases that have no sufficiently similar cases, or if they have, the results of these previous cases are inconsistent. That is, the appropriateness of CBR is different for each target case, even though they are problems in the same domain. Thus, applying CBR to whole datasets in a domain is not reasonable. This paper presents a new hybrid datamining technique called two-step filtering CBR and Rule Induction (TSFCR), which dynamically selects either CBR or RI for each target case, taking into consideration similarities and consistencies of previous cases. We apply this method to three medical diagnosis datasets and one credit analysis dataset in order to demonstrate that TSFCR outperforms the genuine CBR and RI.

  • PDF

공정계획 전문가시스템의 개발-조선 블럭분할에의 응용

  • 박병태;이재원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.370-374
    • /
    • 1993
  • This paper describes a study on the expert system based process planning of the block division process in shipbuilding. The prototype system developed deterines the block division line of the midship of crude-oil tanker. Case-based reasoning (CBR) approach relying on previous similar cases to solve the problem is applied instead of rule-based reasoning (RBR). Similar cases are retrieved from case base according to the similarity metrics between input problem and cases. The retrieved case with the highest priority is then adapted to fit to the input problem buy adaptation rules. The adapted solution is proposed as the division line for the input problem.

벤쳐 투자를 위한 의사결정 클래스 분석 : 사례기반추론 접근방법 (Analyzing a Class of Investment Decisions in New Ventures : A CBR Approach)

  • Lee, Jae-Kwang;Kim, Jae-Kyeong
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.355-361
    • /
    • 1999
  • An application of case-based reasoning is proposed to build an influence diagram for identifying successful new ventures. The decision to invest in new ventures in characterized by incomplete information and uncertainty, where some measures of firm performance are quantitative, while some others are substituted by qualitative indicators. Influence diagrams are used as a model for representing investment decision problems based on incomplete and uncertain information from a variety of sources. The building of influence diagrams needs much time and efforts and the resulting model such as a decision model is applicable to only one specific problem. However, some prior knowledge from the experience to build decision model can be utilized to resolve other similar decision problems. The basic idea of case-based reasoning is that humans reuse the problem solving experience to solve a new decision. In this paper, we suggest a case-based reasoning approach to build an influence diagram for the class of investment decision problems. This is composed of a retrieval procedure and an adaptation procedure. The retrieval procedure use two suggested measures, the fitting ratio and the garbage ratio. An adaptation procedure is based on a decision-analytic knowledge and decision participants knowledge. Each step of procedure is explained step by step, and it is applied to the investment decision problem in new ventures.

  • PDF

인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템 (The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system)

  • 이길재;김창주;안병렬;김문현
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.45-52
    • /
    • 2008
  • 최근 IT 서비스 발달과 함께 고장제어, 고장의 원인분석 등의 복잡한 문제에 대하여 적합한 해결책을 제시할 수 있는 효과적인 진단시스템의 필요성이 커지고 있다. 따라서 본 논문에서는 지능형 진단 시스템분야에서의 시스템의 성능을 향상시키고, 최적의 진단을 수행하고자 사례기반추론과 인공신경망을 혼합한 지능형 진단 시스템을 제안 한다. 사례기반추론은 과거의 사례(경험)를 통해 현재의 제시된 문제를 해결하는 추론방식으로, 지식 획득이 덜 복잡하고, 정형화되기 어려운 규칙이나 문제영역이 불분명한 분야를 효율적으로 추론할 수 있다. 하지만 사례기반추론만을 이용해 추론된 사례는 증상에 대해 다수의 원인을 추론하게 된다. 이때 추론된 증상에 따른 다수의 원인은 동일한 가중치를 가져 불필요한 원인까지 진단해야 하는 문제점이 있다. 이러한 문제를 해결하고자 인공신경망의 오류역전파 학습 알고리즘을 이용하여 증상에 대한 원인들의 쌍을 학습 시킨 후 각각의 증상에 대한 원인의 가중치를 구해 제시된 증상에 대해 가장 발생 가능성이 높은 원인을 찾아내어, 보다 명확하고 신뢰성 있는 진단을 하는 데 그 목적이 있다.

DSS와 사례기반 추론의 결합 (Integrating Case-Based Reasoning with DSS)

  • 김진백
    • 경영과정보연구
    • /
    • 제2권
    • /
    • pp.169-193
    • /
    • 1998
  • Case- based reasoning(CBR) offers a new approach for developing knowledge based systems. Unlike the rule-based paradigm, in which domain knowledge is encoded in the form of production rules, in the case-based approach the problem solving experience of the domain expert is encoded in the form of cases stored in a casebase(CB). CBR allows a reasoner (1) to propose solutions in domains that are not completely understood by the reasoner, (2) to evaluate solutions when no algorithmic method is available for evaluation, and (3) to interprete open-ended and ill-defined concepts. CBR also helps reasoner (4) take actions to avoid repeating past mistakes, and (5) focus its reasoning on important parts of a problem. Owing to the above advantages, CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and instruction. In this paper, I propose case-based DSS(CBDSS). CBDSS is an intelligent DSS using CBR technique. CBDSS consists of interface, case-based reasoner, maintainer, casebase management system, domain dependent CB, domain independent CB, and so on.

  • PDF

Case based Reasoning System with Two Dimensional Reduction Technique for Customer Classification Model

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.383-386
    • /
    • 2005
  • This study proposes a case based reasoning system with two dimensional reduction techniques. In this study, vertical and horizontal dimensions of the research data are reduced through hybrid feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed technique may improve the classification accuracy and outperform various optimized models of typical CBR system.

  • PDF

2-tier 지능형 전자상거래 에이전트에 관한 연구 (A Study on 2-tier Intelligent Agent for Electronic Commerce)

  • 신승수;나윤지;고일석;윤용기;조용환
    • 한국콘텐츠학회논문지
    • /
    • 제1권1호
    • /
    • pp.51-58
    • /
    • 2001
  • 전자상거래 시스템은 편리한 인터페이스와 상품 정보에 대해 고객이 만족할 만한 수준의 쉽고 빠른 검색 기능을 제공 하여야한다. 이를 위해 지능형 에이전트 기술을 이용한 전자상거래 시스템에 대한 연구가 활발히 진행 되고 있다. 본 논문에서는 혼합적 추론 방법을 이용하여 전자상거래 고객의 요구를 좀더 충실히 반영한 상품의 정보와 고객의 관리가 가능하도록 한 전자상거래 에이전트 시스템을 설계하였다. 본 논문에서는 전자상거래 시스템의 효율을 높이기 위하여 먼저 에이전트는 지식기반의 지능적 다중에이전트로서 사례를 기반으로 한 사례기반 추론과 규칙을 기반으로 한 규칙기반 추론의 단점을 보완한 혼합적 추론 기법을 이용하였다. 또한 동시에 발생하는 다중 사용자의 응답 속도 저하를 방지하기 위해 메인 서버에서 로드 밸런싱을 통한 로드의 분산 기법과 2-계층 구조의 에이전트 구조를 통해 네트워크의 트래픽을 분산시킨 시스템을 설계하였다. 본 논문에서 제안한 전자상거래 시스템은 고객의 다양한 요구에 대한 적응성을 높였고 시스템에 대해 동시에 발생하는 다중 사용자의 요구로 인한 응답 속도의 저하를 막을 수 있다.

  • PDF

사례기반추론을 이용한 비상장기업 및 신규상장기업의 VaR 추정 (Estimating VaR(Value-at-Risk) of non-listed and newly listed companies using Case Based Reasoning)

  • 최경덕;노승종
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.1-13
    • /
    • 2002
  • 비상장기업이나 신규상장기업의 경우 주식거래량과 거래가격이 없거나 불충분하므로 최근 활발히 연구되고 있는 VaR(Value-at-Risk)를 파악하지 못한다. 본 연구에서는 비상장기업 및 신규상장기업의 미래 가격위험의 척도인 VaR를 추정하는 방법론을 제시하고, 이를 시스템(VAS-CBR)으로 구현하였다. 구체적으로는 사례기반추론(Case Based Reasoning: CBR) 기법을 이용하여 기존의 상장회사들 중에서 신규 및 비상장기업과 유사한 재무적, 비재무적 특성을 갖는 상장기업을 찾아내고, 유사기업의 VaR를 근거로 신규 및 비상장기업의 VaR를 간접적으로 추정하였다. 또한 개발 시스템의 예측력 제고를 위한 운용방안 및 시스템의 예측력을 실험을 통하여 밝혔다.

  • PDF

사례 기반 추론 시스템에서 적응 지식 자동 획득 모델에 관한 연구 (A Study on Adaptive Knowledge Automatic Acquisition Model from Case-Based Reasoning System)

  • 이상범;김영천;이재훈;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.81-86
    • /
    • 2002
  • In current CBR(Case-Based Reasoning) systems, the case adaptation is usually performed by rule-based method that use rules hand-coded by the system developer. So, CBR system designer faces knowledge acquisition bottleneck similar to those found in traditional expert system design. In this thesis, 1 present a model for learning method of case adaptation knowledge using case base. The feature difference of each pair of cases are noted and become the antecedent part of an adaptation rule, the differences between the solutions in the compared cases become the consequent part of the rule. However, the number of rules that can possibly be discovered using a learning algorithm is enormous. The first method for finding cases to compare uses a syntactic measure of the distance between cases. The threshold fur identification of candidates for comparison is fixed th the maximum number of differences between the target and retrived case from all retrievals. The second method is to use similarity metric since the threshold method may not be an accurate measure. I suggest the elimination method of duplicate rules. In the elimination process, a confidence value is assigned to each rule based on its frequency. The learned adaptation rules is applied in riven target Problem. The basic. process involves search for all rules that handle at least one difference followed by a combination process in which complete solutions are built.

  • PDF

Cost-Sensitive Case Based Reasoning using Genetic Algorithm: Application to Diagnose for Diabetes

  • Park Yoon-Joo;Kim Byung-Chun
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.327-335
    • /
    • 2006
  • Case Based Reasoning (CBR) has come to be considered as an appropriate technique for diagnosis, prognosis and prescription in medicine. However, canventional CBR has a limitation in that it cannot incorporate asymmetric misclassification cast. It assumes that the cast of type1 error and type2 error are the same, so it cannot be modified according ta the error cast of each type. This problem provides major disincentive to apply conventional CBR ta many real world cases that have different casts associated with different types of error. Medical diagnosis is an important example. In this paper we suggest the new knowledge extraction technique called Cast-Sensitive Case Based Reasoning (CSCBR) that can incorporate unequal misclassification cast. The main idea involves a dynamic adaptation of the optimal classification boundary paint and the number of neighbors that minimize the tatol misclassification cast according ta the error casts. Our technique uses a genetic algorithm (GA) for finding these two feature vectors of CSCBR. We apply this new method ta diabetes datasets and compare the results with those of the cast-sensitive methods, C5.0 and CART. The results of this paper shaw that the proposed technique outperforms other methods and overcomes the limitation of conventional CBR.

  • PDF