오늘날 인터넷의 전반적인 보급 및 전자상거래의 확산으로 인하여 정보의 홍수를 이루게 되었고, 고객들은 자신이 원하는 제품이나 서비스를 선택하기 위해서 정보를 탐색하는 작업이 더욱 어려워지게 되었다. 이러한 고객들에게 좀 더 편리하게 자신이 원하는 제품이나 서비스를 선택하도록 도와주는 것이 추천 시스템으로서, 고객 관계 관리의 중요한 부분으로 자리 잡게 되었다. 본 연구에서는, 인터넷 서점을 이용하는 고객에게 그가 관심을 가질만한 서적을 추천하여 줌으로써 구입할 서적의 선택을 도와주는 서적 추천 시스템을 개발하였다. 기존의 서적 추천 시스템 개발에 협업 필터링 기법이 주로 활용되어 왔다. 하지만 협업 필터링 기법을 적용하기 위해서는 각 서적에 대한 구매자들의 평가치가 수집되어야 하는데, 이러한 평가치들은 시스템 개발 이전에 오랜 기간에 걸쳐 정교한 계획 하에서 수집되어야 한다. 더욱이 구매자들이 평가치 제공에 협조하지 않을 경우에는 추천 시스템 자체의 작동이 불가능하게 된다. 그러므로 본 연구에서는 고객들의 구매기록만으로 서적 추천을 수행할 수 있도록 사례기반추론 기법을 활용하여 시스템을 개발 하였는데, 서적의 소분류 코드를 예측하는 상황에서 약 40% 수준의 적중률을 보였다.
Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.
본 논문에서는 공업용 재봉기의 구성설계를 기능적 접근법을 이용하여 수행하였다. 구성설계 방법을 설계에 이용하면 제품의 개발시간을 줄일 수 있고, 기존의 기구 메커니즘 데이터를 효율적으로 이용할 수 있는데 이러한 구성설계를 구현하기 위해 전문가 시스템을 이용 하였다. 설계 구속조건은 전문가 시스템의 추론기능과 CBR(Case Based Reasoning) 방법을 사용하여 만족되도록 하였으며 전문가 시스템의 API 기능을 이용하여 기구해석과 최적설계가 외부 프로그램을 이용하여 수행됨으로서, 공업용 재봉기의 개념설계가 효율적으로 수행될 수 있도록 하였다.
본 연구에서는 프로젝트의 계획단계에서 프로젝트 관리자가 수행해야 할 프로젝트에 대하여 규모, 범위, 기간, 성격 등의 측면에서 가장 유사한 과거의 사례를 찾아주고 이를 참조하여 WBS를 설계할 수 있도록 규칙과 사례기반 추론에 근거한 프로젝트 계획수립 지원모듈(PPSM: Project Planning Support Module)개발 방법을 제안한다.
미래에 대한 정확한 예측은 경영자, 또는 기업이 수행하는 경영의사결정에 매우 중요한 역할을 한다. 예측만 정확하다면 경영의사결정의 질은 매우 높아질 수 있을 것이다. 하지만 점점 가속화되고 있는 경영 환경의 변화로 말미암아 미래 예측을 정확하게 하는 일은 점점 더 어려워지고 있다. 이에 기업에서는 정확한 예측을 위하여 전문가의 휴리스틱뿐만 아니라 과학적 예측모형을 함께 활용하여 예측의 성과를 높이는 노력을 해 오고 있다. 본 연구는 사례기반추론모형을 예측을 위한 기본 모형으로 설정하고, 데이터 간의 유사도 측정에 퍼지 관계의 개념을 적용함으로써 개선된 예측성과를 얻고자 하였다. 특히, 독립변수 중 기호 데이터 형식의 속성을 가지는 변수들간의 유사도를 측정하기 위해 이진논리의 개념(일치여부의 판단)과 퍼지 관계 및 합성의 개념을 이용하여 도출된 유사도 매트릭스를 사용하였다. 연구 결과, 기호 데이터 형식의 속성을 가지는 변수들 간의 유사도 측정에서 퍼지 관계 및 합성의 개념을 적용하는 방법이 이진논리의 개념을 적용하는 방법과 비교하여 더 우수한 예측정확성을 나타내었다. 그러나 유사도 측정을 위해 다양한 퍼지합성방법(Max-min 합성, Max-product 합성, Max-average 합성)을 적용하여 예측하는 경우에는 예측정확성 측면에서 퍼지 합성방법 간의 통계적인 차이는 유의하지 않았다. 본 연구는 사례기반추론 모형의 구축에서 가장 중요한 유사도 측정에 있어서 퍼지 관계 및 퍼지 합성의 개념을 적용함으로써 유사도 측정 및 적용 방법론을 제시하였다는데 의의가 있다.
인터넷 쇼핑몰에서 사례기반추론기법을 통한 유사상품의 탐색과 사용자 요구에 적합한 상품추천을 위해서는 다양한 요구에 부응할 수 있는 사례베이스의 구축이 우선되어야 한다. 그리고 구축된 사례베이스로부터 유사한 사례를 검색하여 재 사용하거나 필요시 수정하고, 그 결과를 다시 저장하는 기능이 요구된다. 사례기반 상품추천시스템 개발에 있어 가장 중요한 요소는 사례의 표현문제이다. 본 연구에서는 인터넷 수산물 쇼핑몰의 상품추천시스템에서 번들상품 구성문제(집안 이벤트 시 필요한 수산물의 집합)를 표현하는데 적합한 사례표현기법을 개발하며, 유사사례를 추출하기 위한 유사도 척도의 개발에 연구의 첫 번째 주안점을 둔다. 본 논문에서는 번들상품추천을 위한 사례표현기법으로 객체모델링(OMT)기법을 사용하고 있다. 또한 다양한 사례 속성 유사도 측정방법을 적용하며, 유사도 측정에서 분류법(taxonomy)의 의미와 그 적용방법을 제시한다.
In this paper, it is aim to implement a wheelchair monitoring system that provides users with customized medical services easily in everyday life, together with mobility guarantee, which is the most basic requirement of the elderly and disabled persons with physical disabilities. The case-based intelligent wheelchair monitoring system proposed in this study is based on a case-based k-NN algorithm, which implements a system for constructing and inferring examples of various biometric and environmental information of wheelchair users as a knowledge database and a monitoring interface for wheelchair users. In order to confirm the usefulness of the case-based k-NN algorithm, the SVM algorithm showed an average accuracy of 84.2% and the average accuracy of the proposed case-based k-NN algorithm was 86.2% And showed higher performance in terms of accuracy. The system implemented in this paper has the advantage of measuring biometric information and data communication regardless of time and place and it can provide customized service of wheelchair user through user friendly interface.
설비에 고장이 발생하여 고객이 수리를 요청하기 전에 미리 고객을 방문하여 예방점검을 실시하는 것은 고객의 만족도를 높이고 수리기술자의 효과적인 활용을 위해서 매우 중요한 활동이다. 본 연구에서는 설비에 고장이 발생하여 수리가 이루어진 후에 그 설비의 다음 고장은 언제 발생할 것인가를 예측하기 위하여 사례기반 추론을 적용하였다.
Case-Based Reasoning(CBR) systems support ill structured decision-making. The measure of the success of a CBR system depends on its ability to retrieve the most relevant previous cases in support of the solution of a new case. One of the methodologies widely used in existing CBR systems to retrieve previous cases is that of the Nearest Neighbor(NN) matching function. The NN matching function is based on assumptions of the independence of attributes in previous case and the availability of rules and procedures for matching.(omitted)
본 연구에서는 한국종합주가지수 (KOSPI)의 예측을 위하여 사례기반추론에서의 유전자 알고리즘을 이용한 새로운 자료편집기법을 제안한다. 사례기반추론은 복잡한 문제 해결에서의 편의성과 강점으로 인하여 여러 분야에서 광범위하게 활용되고 있다. 그럼에도 불구하고 사례기반추론은 다른 기계학습기법에 비하여 낮은 예측정확도를 나타내기에 비판을 받아 왔다. 일반적으로 사례기반추론으로부터 성공적인 성과를 도출하기 위해서는 주어진 문제에 유용한 선행 사례를 효과적으로 추출하는 것이 핵심이다. 그러나 사례기반추론 시스템에서 우수한 대응과 추출방법을 설계하는 것은 여전히 논란이 있는 연구 주제이다. 본 연구에서는 사례기반추론 시스템에서 우수한 대응과 추출을 위하여 유전자 알고리즘이 동시에 속성 가중치와 적합한 사례를 선택하는 것을 최적화한다. 본 연구에서는 제안된 모형을 주식시장분석에 응용한다. 실험결과는 유전자 알고리즘 접근법이 사례기반추론에서 유망한 사례편집기법이라는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.