• Title/Summary/Keyword: Cascade structure

Search Result 144, Processing Time 0.025 seconds

Cascaded Structure of the High-Temperature Superconducting Hairpin-Comb Filter (고온초전도 헤어핀 콤 여파기의 cascade 구조에 관한 연구)

  • Yun, Seok-Sun;Park, Hee-Chan;Park, Ik-Mo;Min, Byoung-Chul;Choi, Young-Hwan;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.28-34
    • /
    • 2001
  • To improve the skirt characteristic of the high-temperature superconducting filter, we proposed a structure of cascading two independent hairpin-comb filters with an identical frequency response. Resonators of the cascaded filter are arranged in the shape of a diamond so that it minimizes the cross coupling between the resonators. This structure can be used effectively to improve the skirt characteristic of the filter in limited area of a circular wafer. The simulated skirt characteristic of the 18 pole cascaded filter is more than 40dB/MHz attenuation below and above the passband.

  • PDF

Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector (컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류)

  • Yu, Je-Hun;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

(WDF-Based Derivation of Two-Type-Interlaced Structure for Low-Sensitivity Digital Filter Realizations (WDF에 의거한 저면감도 영향교대 필터구조의 유도)

  • 임일택;이병기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.20-30
    • /
    • 1994
  • The lossless bounded real(LBR) two-pair cascade structure is one of the exiting low-sensitivity digital filter structures such as wave digital filters(WDFs) orthogonal filters. They are known to have the same structures which are composed of canonic building blocks interconnected to each other. The LBR two-pair cascade filters amount to describing in a unified manner the existing canonic low-sensitivity filters in terms of transfer matrices and chain matrices. However the existing structures have somewhat degraded low-sensitivity performance because they include dependent parameters within their structures. In this paper we propose a filter structure called “two-type-interlaced(TTI) structure.” eliminating such problem completely. This structures can be viewed as the WDFs of analog ladder circuits. As ladder circuits are obtained by cascading Brune sections and merging neighboring inductors or capacitors. so TTI structures at e obtained by cascading Type 3 LBR two-pairs and merging neighboring Type 1 LBR two-pairs. Next, a test procedure called “LBR test” is also presented in this paper. which determines whether of not the quantized TTI structure is stable . If it is unstable we can fine-tune the quantized parameters to make the overall structure stable. Therefore we can solve the dependent parameter problem completely with TTI structure along with LBR test. test.

  • PDF

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

Delta-Sigma Modulator Structure and limit Cycle Generation (델타시그마 변환기 구조와 Limit Cycle 발생)

  • Hyun, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.39-44
    • /
    • 2006
  • Pattern noise in the Delta-Sigma modulator is a well Known phenomenon that intrigued many circuit designers. These noise appear as the modulator output falls into a cyclic mode of operation. This paper addresses the dependence of these tone signal upon the system topologies. Among the four well known single-stage DSM topologies, namely Cascade of Integrators with Feedback Form(CIFB), Cascade of Integrators with Feedforward Form(CIFF), Cascade of Resonators with Feedback Form(CRFB), and Cascade of Resonators with Feedforward Form(CRFF), resonator type DSMs turn out to be more susceptible to the pattern noise than the integrator type. Noise transfer functions of the investigated topologies are also presented.

Threshold Current Reduction of GaAs/AlGaAs Quantum Cascade Laser due to the Deep Mesa Structure (GaAs/AlGaAs Quantum Cascade Laser에서 Deep Mesa 구조에 의한 문턱전류 감소)

  • Han, Il-Ki;Song, Jin-Dong;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.523-527
    • /
    • 2008
  • GaAs/AlGaAs based quantum cascade lasers were fabricated with two different types of i) the shallow mesa type which was etched up to above active region and ii) the deep mesa type which was etched through active region. While the threshold current density of shallow mesa type was $26-32\;kA/cm^2$, the one of deep mesa type was reduced drastically up to $13\;kA/cm^2$. Such lowered threshold current density at deep mesa type attributed to the reduction of current loss to the lateral directions.

Performance Analysis of Cascade AOA Estimator with Concentric Ring Array Antenna (동심원 배열 안테나를 적용한 캐스케이드 도래각 추정 성능분석)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.849-856
    • /
    • 2020
  • The Angle-of-Arrival(AOA) information for an array antenna receiver is one of the important factors for estimating the location of specific signals and detecting signals efficiently, in various situations. The AOA estimator in the satellite environment can rapidly calculate the AOA information in the wide area, utilizing a planar (grid, circular) array antenna mounted on the satellite. Since the satellite receiver has the limitation of the array antenna size, the concentric circular (ring) array (CCA or CRA) antenna structure with comparatively small size but with multiple antenna elements is more efficient than the uniform circular array (UCA) structure, for the satellite environment. In this paper, we introduce a cascade AOA estimation algorithm based on CRA, consisting of CAPON and Beamspace MUSIC. In addition, we provide computer simulation examples for verifying the estimation performance of the cascade AOA estimation algorithm based on CRA and compare it to the case of UCA.

Sidewalls Design for a Double-Passage Cascade Model (2피치 유로의 캐스케이드 모델을 위한 벽면설계에 관한 연구)

  • Cho, Chong-Hyun;Cho, Bong-Soo;Kim, Chae-Sil;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.797-806
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient-based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

Damage detection of plate-like structures using intelligent surrogate model

  • Torkzadeh, Peyman;Fathnejat, Hamed;Ghiasi, Ramin
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1233-1250
    • /
    • 2016
  • Cracks in plate-like structures are some of the main reasons for destruction of the entire structure. In this study, a novel two-stage methodology is proposed for damage detection of flexural plates using an optimized artificial neural network. In the first stage, location of damages in plates is investigated using curvature-moment and curvature-moment derivative concepts. After detecting the damaged areas, the equations for damage severity detection are solved via Bat Algorithm (BA). In the second stage, in order to efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, multiple damage location assurance criterion index based on the frequency change vector of structures are evaluated using properly trained cascade feed-forward neural network (CFNN) as a surrogate model. In order to achieve the most generalized neural network as a surrogate model, its structure is optimized using binary version of BA. To validate this proposed solution method, two examples are presented. The results indicate that after determining the damage location based on curvature-moment derivative concept, the proposed solution method for damage severity detection leads to significant reduction of computational time compared with direct finite element method. Furthermore, integrating BA with the efficient approximation mechanism of finite element model, maintains the acceptable accuracy of damage severity detection.