• Title/Summary/Keyword: Cascade Classifier

Search Result 36, Processing Time 0.019 seconds

Fast Human Detection Algorithm for High-Resolution CCTV Camera (고해상도 CCTV 카메라를 위한 빠른 사람 검출 알고리즘)

  • Park, In-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5263-5268
    • /
    • 2014
  • This paper suggests a fast human detection algorithm that can be applied to a high-resolution CCTV camera. Human detection algorithms, which used a HOG detector show high performance in the region of image processing. On the other hand, it is difficult to apply to real-time high resolution imaging because of its slow processing speed in the extracting figures of HOG. To resolve this problems, we suggest how to detect humans into two stages. First, candidates of a human region are found using background subtraction, and humans and non-humans are distinguished using a HOG detector only. This process increases the detection speed by approximately 2.5 times without any degradation in performance.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.

Iris Detection at a Distance by Non-volunteer Method (비강압적 방법에 의한 원거리에서의 홍채 탐지 기법)

  • Park, Kwon-Do;Kim, Dong-Su;Kim, Jeong-Min;Song, Young-Ju;Koh, Seok-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.705-708
    • /
    • 2018
  • Among biometrics commercialized for security, iris recognition technology has the most excellent security for the probability of the match between individuals is the lowest. Current commercialized iris recognition technology has excellent recognition ability, but this technology has a fatal drawback. Without the user's active cooperation, it cannot recognize the iris correctly. To make up for this weakness, recent trend of iris recognition development mounts a non-volunteering, unconstrained method. According to this information, the objective of this research is developing a module that can identify people iris from a video acquired by high performance infrared camera in a range of 3m and in a involuntary way. For this, we import images from the video and find people's face and eye positions from the images using Haar classifier trained through Cascade training method. finally, we crop the iris by Hough circle transform and compare it with data from the database to identify people.

  • PDF

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

Development of a Face Detection and Recognition System Using a RaspberryPi (라즈베리파이를 이용한 얼굴검출 및 인식 시스템 개발)

  • Kim, Kang-Chul;Wei, Hai-tong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.859-864
    • /
    • 2017
  • IoT is a new emerging technology to lead the $4^{th}$ industry renovation and has been widely used in industry and home to increase the quality of human being. In this paper, IoT based face detection and recognition system for a smart elevator is developed. Haar cascade classifier is used in a face detection system and a proposed PCA algorithm written in Python in the face recognition system is implemented to reduce the execution time and calculates the eigenfaces. SVM or Euclidean metric is used to recognize the faces detected in the face detection system. The proposed system runs on RaspberryPi 3. 200 sample images in ORL face database are used for training and 200 samples for testing. The simulation results show that the recognition rate is over 93% for PP+EU and over 96% for PP+SVM. The execution times of the proposed PCA and the conventional PCA are 0.11sec and 1.1sec respectively, so the proposed PCA is much faster than the conventional one. The proposed system can be suitable for an elevator monitoring system, real time home security system, etc.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.