• Title/Summary/Keyword: Cascade Classifier

Search Result 36, Processing Time 0.023 seconds

Improved Skin Color Extraction Based on Flood Fill for Face Detection (얼굴 검출을 위한 Flood Fill 기반의 개선된 피부색 추출기법)

  • Lee, Dong Woo;Lee, Sang Hun;Han, Hyun Ho;Chae, Gyoo Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • In this paper, we propose a Cascade Classifier face detection method using the Haar-like feature, which is complemented by the Flood Fill algorithm for lossy areas due to illumination and shadow in YCbCr color space extraction. The Cascade Classifier using Haar-like features can generate noise and loss regions due to lighting, shadow, etc. because skin color extraction using existing YCbCr color space in image only uses threshold value. In order to solve this problem, noise is removed by erosion and expansion calculation, and the loss region is estimated by using the Flood Fill algorithm to estimate the loss region. A threshold value of the YCbCr color space was further allowed for the estimated area. For the remaining loss area, the color was filled in as the average value of the additional allowed areas among the areas estimated above. We extracted faces using Haar-like Cascade Classifier. The accuracy of the proposed method is improved by about 4% and the detection rate of the proposed method is improved by about 2% than that of the Haar-like Cascade Classifier by using only the YCbCr color space.

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.

Implementation of Face Mask Detection (얼굴 마스크 탐지의 구현)

  • Park, Seong Hwan;Jung, Yuchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.17-19
    • /
    • 2021
  • 본 논문에서는 코로나19 사태에 대비하여 실시간으로 마스크를 제대로 쓴 사람과 제대로 쓰지 않은 사람을 구분하는 시스템을 제안한다. 이 시스템을 사용하기 위하여 모델 학습 시에 합성곱 신경망(CNN : Convolutional Neural Networks)를 사용한다. 학습된 모델을 토대로 영상에 적용 시 하르 특징 분류기(Haar Cascade Classifier)로 얼굴을 탐지하여 마스크 여부를 판단한다.

  • PDF

Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems (사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘)

  • Kang, Hyunwoo;Baek, Jang Woon;Han, Byung-Gil;Chung, Yoonsu
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.408-416
    • /
    • 2017
  • This paper proposes a real-time side-rear vehicle detection algorithm that detects vehicles quickly and accurately in blind spot areas when driving. The proposed algorithm uses a cascade classifier created by AdaBoost Learning using the MCT (modified census transformation) feature vector. Using this classifier, the smaller the detection window, the faster the processing speed of the MCT classifier, and the larger the detection window, the greater the accuracy of the MCT classifier. By considering these characteristics, the proposed algorithm uses two classifiers with different detection window sizes. The first classifier quickly generates candidates with a small detection window. The second classifier accurately verifies the generated candidates with a large detection window. Furthermore, the vehicle classifier and the wheel classifier are simultaneously used to effectively detect a vehicle entering the blind spot area, along with an adjacent vehicle in the blind spot area.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

A Study on Utilizing Smartphone for CMT Object Tracking Method Adapting Face Detection (얼굴 탐지를 적용한 CMT 객체 추적 기법의 스마트폰 활용 연구)

  • Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.588-594
    • /
    • 2021
  • Due to the recent proliferation of video contents, previous contents expressed as the character or the picture are being replaced to video and growth of video contents is being boosted because of emerging new platforms. As this accelerated growth has a great impact on the process of universalization of technology for ordinary people, video production and editing technologies that were classified as expert's areas can be easily accessed and used from ordinary people. Due to the development of these technologies, tasks like that recording and adjusting that depends on human's manual involvement could be automated through object tracking technology. Also, the process for situating the object in the center of the screen after finding the object to record could have been automated. Because the task of setting the object to be tracked is still remaining as human's responsibility, the delay or mistake can be made in the process of setting the object which has to be tracked through a human. Therefore, we propose a novel object tracking technique of CMT combining the face detection technique utilizing Haar cascade classifier. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the smartphone in real time.

A Video based Traffic Light Recognition System for Intelligent Vehicles (지능형 자동차를 위한 비디오 기반의 교통 신호등 인식 시스템)

  • Chu, Yeon Ho;Lee, Bok Joo;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2015
  • Traffic lights are common in cities and are important cues for the path planning of intelligent vehicles. In this paper, we propose a robust and efficient algorithm for recognizing traffic lights from video sequences captured by a low cost off-the-shelf camera. Instead of using color information for recognizing traffic lights, a shape based approach is adopted. In learning and detection phase, Histogram of Oriented Gradients (HOG) feature is used and a cascade classifier based on Adaboost algorithm is adopted as the main classifier for locating traffic lights. To decide the color of the traffic light, a technique based on histogram analysis in HSV color space is utilized. Experimental results on several video sequences from typical urban environment prove the effectiveness of the proposed algorithm.

Automatic modulation classification of noise-like radar intrapulse signals using cascade classifier

  • Meng, Xianpeng;Shang, Chaoxuan;Dong, Jian;Fu, Xiongjun;Lang, Ping
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.991-1003
    • /
    • 2021
  • Automatic modulation classification is essential in radar emitter identification. We propose a cascade classifier by combining a support vector machine (SVM) and convolutional neural network (CNN), considering that noise might be taken as radar signals. First, the SVM distinguishes noise signals by the main ridge slice feature of signals. Second, the complex envelope features of the predicted radar signals are extracted and placed into a designed CNN, where a modulation classification task is performed. Simulation results show that the SVM-CNN can effectively distinguish radar signals from noise. The overall probability of successful recognition (PSR) of modulation is 98.52% at 20 dB and 82.27% at -2 dB with low computation costs. Furthermore, we found that the accuracy of intermediate frequency estimation significantly affects the PSR. This study shows the possibility of training a classifier using complex envelope features. What the proposed CNN has learned can be interpreted as an equivalent matched filter consisting of a series of small filters that can provide different responses determined by envelope features.

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.