• Title/Summary/Keyword: Carrying capacity model

Search Result 342, Processing Time 0.024 seconds

A State-space Production Assessment Model with a Joint Prior Based on Population Resilience: Illustration with the Common Squid Todarodes pacificus Stock (자원복원력 개념을 적용한 사전확률분포 및 상태공간 잉여생산 평가모델: 살오징어(Todarodes pacificus) 개체군 자원평가)

  • Gim, Jinwoo;Hyun, Saang-Yoon;Yoon, Sang Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.183-188
    • /
    • 2022
  • It is a difficult task to estimate parameters in even a simple stock assessment model such as a surplus production model, using only data about temporal catch-per-unit-effort (CPUE) (or survey index) and fishery yields. Such difficulty is exacerbated when time-varying parameters are treated as random effects (aka state variables). To overcome the difficulty, previous studies incorporated somewhat subjective assumptions (e.g., B1=K) or informative priors of parameters. A key is how to build an objective joint prior of parameters, reducing subjectivity. Given the limited data on temporal CPUEs and fishery yields from 1999-2020 for common squid Todarodes pacificus, we built a joint prior of only two parameters, intrinsic growth rate (r) and carrying capacity (K), based on the resilience level of the population (Froese et al., 2017), and used a Bayesian state-space production assessment model. We used template model builder (TMB), a R package for implementing the assessment model, and estimating all parameters in the model. The predicted annual biomass was in the range of 0.76×106 to 4.06×106 MT, the estimated MSY was 0.13×106 MT, the estimated r was 0.24, and the estimated K was 2.10×106 MT.

A Basic Study on Safe Mooring Guide for Dangerous Goods Berths in Ul-San Port (울산항 위험물 부두의 안전계류에 관한 기초연구)

  • Kang, Won-Sik;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2016
  • This study analyzed the state of the vessels which were using the berth for dangerous goods more than its carrying capacity in the major dangerous cargo handling port of Ulsan in Korea, The result of the analysis showed that a ship which has 3 times more than the maximum berthing capacity was moored at berth. Accordingly, a simulation model for 50,000 DWT berth was built and carried out the mooring safety analysis with 50,000 DWT, 70,000 DWT and 100,000 DWT vessels by mooring assessment program. The evaluation was carried out according to the standard environment presented in OCIMF standards. 50,000 DWT vessel was evaluated to meet the acceptable criteria but, 70,000 DWT and 100,000 DWT vessels exceeded the acceptable limit as per external conditions. Consequently, safe mooring guidelines were suggested and also proposed the building of common 'Mooring safety guideline' for port with assessment of different cases.

Effect of pile group geometry on bearing capacity of piled raft foundations

  • Fattah, Mohammed Y.;Yousif, Mustafa A.;Al-Tameemi, Sarmad M.K.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.829-853
    • /
    • 2015
  • This is an experimental study to investigate the behaviour of piled raft system in different types of sandy soil. A small scale "prototype" model was tested in a sand box with load applied to the foundation through a compression jack and measured by means of load cell. The settlement was measured at the raft by means of dial gauges, three strain gauges were attached on piles to measure the strains and calculate the load carried by each pile in the group. Nine configurations of group ($1{\times}2$, $1{\times}3$, $1{\times}4$, $2{\times}2$, $2{\times}3$, $2{\times}4$, $3{\times}3$, $3{\times}4$ and $4{\times}4$) were tested in the laboratory as a free standing pile group (the raft not in contact with the soil) and as a piled raft (the raft in contact with the soil), in addition to tests for raft (unpiled) with different sizes. It is found that when the number of piles within the group is small (less than 4), there is no evident contribution of the raft to the load carrying capacity. The failure load for a piled raft consisting of 9 piles is approximately 100% greater than free standing pile group containing the same number of piles. This difference increases to about 4 times for 16 pile group. The piles work as settlement reducers effectively when the number of piles is greater than 6 than when the number of piles is less than 6. The settlement can be increased by about 8 times in ($1{\times}2$) free standing pile group compared to the piled raft of the same size. The effect of piled raft in reducing the settlement vanishes when the number of piles exceeds 6.

The Prediction of Failure Load for an Unsymmetrically Stiffened Circular Composite Spar (비대칭으로 보강된 복합재 원형 스파의 파손하중 예측)

  • Kim, Sung Joon;Lee, Donggeon;Park, Sang Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.505-511
    • /
    • 2020
  • The circular composite tubes have been used as a main spar of HALE-UAV(High Altitude Long Endurance-Unmanned Air Vehicle). In this paper, an analytical model is presented for the prediction of the failure load of unsymmetrically stiffened circular spar using a modified Brazier approach. This model was used to predict the moment carrying capacity of the unsymmetrically stiffened circular spar. From the results, we can know that a stiffened cap placed in the top sector of a spar increased the bending capabilities. Four point bending tests were conducted to estimate the effect of the cap on the failure load and compared with the proposed model. And numerical simulations were performed to analyze the behavior of stiffened circular spar. Comparisons of the results from the proposed model with those from experiments and numerical modes show good correlation.

Development of a Decision Making Model for Efficient Rehabilitation of Sewer System (효율적인 하수관거 개량을 위한 의사결정모형의 개발)

  • Lee, Jung-Ho;Jun, Hwan-Don;Joo, Jin-Gul;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.127-135
    • /
    • 2008
  • The objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I) and insufficient carrying capacity (ICC). Such rehabilitation efforts, however, have not been particularly successful due to a lack of sewer data and unsystematic field practices. The present study aimed to solve these problems by developing a decision making model consisting of two models: the rehabilitation weighting model (RWM) and the rehabilitation priority model (RPM). In RWM, the I/I of each pipe in a drainage district is estimated according to various defects, with each defect given an individual weighting factor using an analytic hierarchy process (AHP). RPM determines the optimal rehabilitation priority (ORP) using a genetic algorithm (GA). The developed models can be used to overcome the problems associated with unsystematic practices and, in practice, as a decision making tool for urban sewer system rehabilitation.

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

The Research on Informatization Level Evaluation Model in Construction Company (건설 정보화 수준 평가모형 연구)

  • Chang, Hang-Bae;Kang, Hee-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.170-179
    • /
    • 2008
  • This study designed model that could scientifically and objectively evaluate a level of informatization of construction companies in consideration of informatization characteristics and limitations identified in researches related to the evaluation of informatization level of construction companies, so at to create the e-business environment for the construction companies including the enhancement of informatization consciousness and to improve capacity to carry out informatization. To do this, the study defined requirements to develop new model of construction informatization level and the characteristics of construction companies, and developed components of informatization level model and measuring methods that could meet the requirements based on theories and literature. The developed informatization level model were reviewed for validity and reliability through statistical method by carrying out the questionnaire survey on 200 companies along with an advisory group of experts. As the result of this study, we could suggest the directions for informatization to narrow the gap between the current level of informatization and the managerial goals in construction company.

  • PDF

Numerical Analysis of Load Carrying Capacity of RC Structures Based on Concrete Damage Model (콘크리트 손상 모델을 적용한 콘크리트 구조물 구조내력 해석)

  • Woo, Sang Kyun;Lee, Yun;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.121-128
    • /
    • 2012
  • In this paper, nonlinear analysis for reinforced concrete structure for power transmission line is performed by considering the characteristics of the failure, which are depend on loading conditions and concrete material models. On the numerical evaluation for the failure behavior, the finite element analysis is applied. For the concrete material model, microplane model based on concrete damage is introduced. However, to describe the crack bridging effect of long and short fiber of steel fiber reinforced concrete (SFRC), tensile softening model is suggested and applied for SFRC. An numerical results by finite element technique are compared with the experiment results for box culvert specimen. Comparing on the experimental and analytical results, validity and reliability of numerical analysis are investigated.

System identification of an in-service railroad bridge using wireless smart sensors

  • Kim, Robin E.;Moreu, Fernando;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.683-698
    • /
    • 2015
  • Railroad bridges form an integral part of railway infrastructure throughout the world. To accommodate increased axel loads, train speeds, and greater volumes of freight traffic, in the presence of changing structural conditions, the load carrying capacity and serviceability of existing bridges must be assessed. One way is through system identification of in-service railroad bridges. To dates, numerous researchers have reported system identification studies with a large portion of their applications being highway bridges. Moreover, most of those models are calibrated at global level, while only a few studies applications have used globally and locally calibrated model. To reach the global and local calibration, both ambient vibration tests and controlled tests need to be performed. Thus, an approach for system identification of a railroad bridge that can be used to assess the bridge in global and local sense is needed. This study presents system identification of a railroad bridge using free vibration data. Wireless smart sensors are employed and provided a portable way to collect data that is then used to determine bridge frequencies and mode shapes. Subsequently, a calibrated finite element model of the bridge provides global and local information of the bridge. The ability of the model to simulate local responses is validated by comparing predicted and measured strain in one of the diagonal members of the truss. This research demonstrates the potential of using measured field data to perform model calibration in a simple and practical manner that will lead to better understanding the state of railroad bridges.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.