• Title/Summary/Keyword: Cardiovascular flow

Search Result 598, Processing Time 0.025 seconds

Comparison of Hemodynamic Energy between Expanded Polytetrafluoroethylene and Dacron Artificial Vessels

  • Lim, Jaekwan;Won, Jong Yun;Ahn, Chi Bum;Kim, Jieon;Kim, Hee Jung;Jung, Jae Seung
    • Journal of Chest Surgery
    • /
    • v.54 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • Background: Artificial grafts such as polyethylene terephthalate (Dacron) and expanded polytetrafluoroethylene (ePTFE) are used for various cardiovascular surgical procedures. The compliance properties of prosthetic grafts could affect hemodynamic energy, which can be measured using the energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE). We investigated changes in the hemodynamic energy of prosthetic grafts. Methods: In a simulation test, the changes in EEP for these grafts were estimated using COMSOL MULTIPHYSICS. The Young modulus, Poisson ratio, and density were used to analyze the grafts' material properties, and pre- and post-graft EEP values were obtained by computing the product of the pressure and velocity. In an in vivo study, Dacron and ePTFE grafts were anastomosed in an end-to-side fashion on the descending thoracic aorta of swine. The pulsatile pump flow was fixed at 2 L/min. Real-time flow and pressure were measured at the distal part of each graft, while clamping the other graft and the descending thoracic aorta. EEP and SHE were calculated and compared. Results: In the simulation test, the mean arterial pressure decreased by 39% for all simulations. EEP decreased by 42% for both grafts, and by around 55% for the native blood vessels after grafting. The in vivo test showed no significant difference between both grafts in terms of EEP and SHE. Conclusion: The post-graft hemodynamic energy was not different between the Dacron and ePTFE grafts. Artificial grafts are less compliant than native blood vessels; however, they can deliver pulsatile blood flow and hemodynamic energy without any significant energy loss.

Differences in Treatment Outcomes According to the Insertion Method Used in Extracorporeal Cardiopulmonary Resuscitation: A Single-Center Experience

  • Han Sol Lee;Chul Ho Lee;Jae Seok Jang;Jun Woo Cho;Yun-Ho Jeon
    • Journal of Chest Surgery
    • /
    • v.57 no.3
    • /
    • pp.281-288
    • /
    • 2024
  • Background: Venoarterial extracorporeal membrane oxygenation (ECMO) is a key treatment method used with patients in cardiac arrest who do not respond to medical treatment. A critical step in initiating therapy is the insertion of ECMO cannulas. Peripheral ECMO cannulation methods have been preferred for extracorporeal cardiopulmonary resuscitation (ECPR). Methods: Patients who underwent ECPR at Daegu Catholic University Medical Center between January 2017 and May 2023 were included in this study. We analyzed the impact of 2 different peripheral cannulation strategies (surgical cutdown vs. percutaneous cannulation) on various factors, including survival rate. Results: Among the 99 patients included in this study, 66 underwent surgical cutdown, and 33 underwent percutaneous insertion. The survival to discharge rates were 36.4% for the surgical cutdown group and 30.3% for the percutaneous group (p=0.708). The ECMO insertion times were 21.3 minutes for the surgical cutdown group and 10.3 minutes for the percutaneous group (p<0.001). The factors associated with overall mortality included a shorter low-flow time (hazard ratio [HR], 1.045; 95% confidence interval [CI], 1.019-1.071; p=0.001) and whether return of spontaneous circulation was achieved (HR, 0.317; 95% CI, 0.127-0.787; p=0.013). Low-flow time was defined as the time from the start of cardiopulmonary resuscitation to the completion of ECMO cannula insertion. Conclusion: No statistically significant difference in in-hospital mortality was observed between the surgical and percutaneous groups. However, regardless of the chosen cannulation strategy, reducing ECMO cannulation time was beneficial, as a shorter low-flow time was associated with significant benefits in terms of survival.

Influences of Geometric Configurations of Bypass Grafts on Hemodynamics in End-to-Side Anastomosis

  • Choi, Jae-Sung;Hong, Sung-Chul;Kwon, Hyuck-Moon;Suh, Sang-Ho;Lee, Jeong-Sang
    • Journal of Chest Surgery
    • /
    • v.44 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • Background: Although considerable efforts have been made to improve the graft patency in coronary artery bypass surgery, the role of biomechanical factors remains underrecognized. The aim of this study is to investigate the influences of geometric configurations of the bypass graft on hemodynamic characteristics in relation to anastomosis. Materials and Methods: The Numerical analysis focuses on understanding the flow patterns for different values of inlet and distal diameters and graft angles. The Blood flow field is treated as a two-dimensional incompressible laminar flow. A finite volume method is adopted for discretization of the governing equations. The Carreau model is employed as a constitutive equation for blood. In an attempt to obtain the optimal aorto-coronary bypass conditions, the blood flow characteristics are analyzed using in vitro models of the end-to-side anastomotic angles of $45^{\circ}$, $60^{\circ}$ and $90^{\circ}$. To find the optimal graft configurations, the mass flow rates at the outlets of the four models are compared quantitatively. Results: This study finds that Model 3, whose bypass diameter is the same as the inlet diameter of the stenosed coronary artery, delivers the largest amount of blood and the least pressure drop along the arteries. Conclusion: Biomechanical factors are speculated to contribute to the graft patency in coronary artery bypass grafting.

Hemodynamic simulation of the aging effect on the cardiovascular system (심혈관계의 노화현상에 대한 혈류역학적 시뮬레이션)

  • Byun Su-Young;Sohn Jeong L.;Shim Eun-Bo;Ro Sung Tack
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.713-716
    • /
    • 2002
  • Aging effect on the cardiovascular circulation is simulated by lumped parameter model. Aging phenomena can be hemodynamically explained as (1) the increase of flow resistance induced by remodeling of artery vessels and increased viscosity of blood and (2) the reduction of the vessel capacitance caused by arteriosclerosis. Appropriate physiological parameters are evaluated from the clinical data of adults and old men. Simulation results well explain the hypertension with aging of cardiovascular system.

  • PDF

Comparative Studies of Pulsatile and Nonpulsatile Blood Flow during Cardiopulmonary Bypass (박동류 및 비박동류에 의한 체외순환의 비교)

  • Sun, Kyung;Baek, Kwang-Je;Kim, Yo-Han;Kim, Chang-Young;Kim, Kwang-Taek;Kim, Hark-Jei;Kim, Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.18 no.2
    • /
    • pp.182-192
    • /
    • 1985
  • [here are so many reports that pulsatile blood flow provides physiologic organ perfusions during cardiopulmonary bypass. So, we compared the recent 30 cases undergoing cardiac surgery by Cobe-Stckert pulsatile roller pump with another 30 cases by Polystan nonpulsatile roller pump. Pulsatile flow was applied during aortic-cross clamping period when synchronized to internal EKG simulator, and perfusion mode was changed to continuous nonpulsatile flow after declamping of aorta. Age, sex, weight, and disease entities were comparable and operative techniques were similar between two groups. 1. There were no differences in average ACC time, ECC time, and Operation time. 2. Postoperative artificial respiration time was 6hrs 30mins in nonpulsatile group and 4hrs 48mins in pulsatile group, and detubation time after ventilator weaning was 2hrs 44mins in nonpulsatile group and 1hrs 43mins in pulsatile group. 3. Average pulse pressure was 8mmHg in nonpulsatile group and 55mmHg in pulsatile group, and a mean arterial pressure was 66.0mmHg in nonpulsatile group and 60.7mmHg in pulsatile group. 4. Mean urine-output during ACC;ECC period was 9.717.3;9.913.2ml/kg/hr in nonpulsatile group and 14.215.0;15.817.5 in pulsatile group [p<0, 05], and thereafter progressive decrease of differences in urine output between two groups until POD 2, and lesser amounts of diuretics was needed in pulsatile group during same postoperative period. Serum BUN/Cr level showed no specific difference and urine concentration power was well preserved in both groups. 5. Plasma proteins and other Enzymes showed no differences between two groups, but serum GOT/GPT level was higher in nonpulsatile group till POD 2. 6. Serum Electrolytes showed no differences between two groups. 7. WBC, RBC, Platelet counts, Hgb and Hct were not different and Coagulogram was well preserved in both groups. 8. Plasma free Hgb level was 7.09mg% in pulsatile group compared with 3.48mg% in pulsatile group on POD 1 but was normalized on POD 2. Gross hemoglobinuria after ECC was noted in 6 cases [20%] of pulsatile group and 4 cases [13%] of nonpulsatile group. 9. In both groups, most patients were included in NYHA class III to IV [28 cases;93% in nonpulsatile group, 22 cases;73% in pulsatile group] preoperatively, and well improved to class I to 11[22 cases; 73% in nonpulsatile group, 30 cases; 100% in pulsatile group] postoperatively. There were 7 operative mortalities in nonpulsatile group only, which were 5 cases of TOF with hepatic failure, 1 case of multiple VSDs with low out-put syndrome, and 1 case of mitral valvular heart disease with cardiomyopathy. We concluded that the new, commercially available Cobe-Stckert pulsatile roller pump device was safe, simple, and reliable.

  • PDF

Microfluidic Method for Measurement of Blood Viscosity based on Micro PIV (Micro PIV 를 기반한 혈액 점도 측정 기법)

  • Hong, Hyeonji;Jung, Mirim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.14-19
    • /
    • 2017
  • Increase of blood viscosity significantly changes the flow resistance and wall shear stress which are related with cardiovascular diseases. For measurement of blood viscosity, microfluidic method has proposed by monitoring pressure between sample and reference flows in the downstream of a microchannel with two inlets. However, it is difficult to apply this method to unknown flow conditions. To measure blood viscosity under unknown flow conditions, a microfluidic method based on micro particle image velocimetry(PIV) is proposed in this study. Flow rate in the microchannel was estimated by assuming velocity profiles represent mean value along channel depth. To demonstrate the measurement accuracy of flow rate, the flow rates measured at the upstream and downstream of a T-shaped microchannel were compared with injection flow rate. The present results indicate that blood viscosity could be reasonably estimated according to shear rate by measuring the interfacial width and flow rate of blood flow. This method would be useful for understanding the effects of hemorheological features on the cardiovascular diseases.

Effects of Korean Ginseng, Korean Red Ginseng and Fermented Korean Red Ginseng on Cerebral Blood Flow, Cerebrovascular Reactivity, Systemic Blood Pressure and Pulse Rate in Humans (인삼, 홍삼 및 발효 홍삼이 정상인의 뇌혈류, 평균혈압, 맥박수에 미치는 영향)

  • Jeong, Dong-Won;Hong, Jin-Woo;Shin, Won-Jun;Park, Young-Min;Jung, Jae-Han;Kim, Chang-Hyun;Min, In-Kyu;Park, Seong-Uk;Jung, Woo-Sang;Park, Jung-Mi;Go, Chang-Nam;Cho, Ki-Ho;Moon, Sang-Kwan
    • The Journal of Korean Medicine
    • /
    • v.27 no.3 s.67
    • /
    • pp.38-50
    • /
    • 2006
  • Objectives: The aim of this study was to evaluate the effects of Korean ginseng (KG), Korean red ginseng (KRG) and fermented Korean red ginseng (FKRG) extracts on cerebral hemodynamics and to compare distinction of each extract. Methods: Ten healthy male volunteers $(26.0{\pm}1.8yrs)$ participated in the study according to double-blind and cross-over protocols. Each volunteer was blindly administered 500mg of KG, KRG, FKRG extract or placebo (Dextrin). Blinded researchers measured changes of hyperventilation-induced cerebrovascular reactivity (CVR), mean blood flow velocity (MBFV) of middle cerebral arteries (MCAs) and corrected blood flow velocity at $P_{ETCO2}=40mmHg$ (CV40) using transcranial Doppler ultrasound (DWL Co., Germany). Researchers also observed changes of mean blood pressure (MBP), pulse rate (PR) and expiratory $CO_2$ using S/5 Collector (Datex-Ohmeda Co., Finland). The evaluation was performed at basal condition, and repeated at 1, 2, 3, 4 and 5 hours after administration. Results: MBFV and CV40 in the KRG group tended to rise at I hour after administration, while those of the FKRG group tended to rise at 2 hours after administration. CVR increased significantly after 1 hour in the KRG group (p=0.009) and after 2 hours in the FKRG group (p=0.035), respectively. The KG group showed increasing tendency at 4 hours after administration. No group showed significant difference from the placebo in changes of MBP and PR. Conclusions: It is suggested that KG, KRG and FKRG extracts have effects of enhancing CVR and thus of increasing cerebral blood flow in human subjects.

  • PDF

Persistent Left Sperior Vena Cava Draining into the Left Atrium with Absent Right Superior Vena Cava in Tetralogy of Fallot (우측상대정맥 없이 좌측 상대정맥이 좌심방으로 유입되는 활로씨 사징증의 수술치험 1례)

  • Kim, Hyuk;Kim, Byoung-Il;Kim, Nam-Su;Kim, Young-Hak;Chung, Won-Sang;Kang, Jung-Ho;Jee, Heng-Ok;Lee, Chul-Bum;Jeon, Seok-Chol
    • Journal of Chest Surgery
    • /
    • v.32 no.12
    • /
    • pp.1115-1117
    • /
    • 1999
  • A persistent left superior vena cava draining into the coronary sinus is the most benign and widely encountered abnormality and can easily be explained embryologically as the persistence of the usual pattern of vnous circulation in the embryo,. However a persistent left superior vena cava draining into the left atrium with absent right superior vena cava is an extremely rare anomaly. We report this situation in an infant with tetralogy of Fallot. The most common approach has traditionally been intraatrial baffle repair to create a tunnel to the right atrium or rerouting of the left superior vena cava flow by directly anastomosing the left superior vena cava to the right atrium In the present study the left superior vena cava was transposed to the left pulmonary artery after the correction of tetralogy of Fallot. The most common approach has traditionally been intraatrial baffle repair to create a tunnel to the right atrium or rerouting of the left superior vena cava flow by directly anastomosing the left superior vena cava to the right atrium. In the present study the left superior vena cava was transposed to the left pulmonary artery after the correction of tetralogy of Fallot.

  • PDF

PIV System for the Flow Pattern Anaysis of Artificial Organs ; Applied to the In Vitro Test of Artificial Heart Valves

  • Lee, Dong-Hyeok;Seh, Soo-Won;An, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.489-497
    • /
    • 1994
  • The most serious problems related to the cardiovascular prothesis are thrombosis and hemolysis. It is known that the flow pattern of cardiovascular prostheses is highly correlated with thrombosis and hemolysis. Laser Doppler Anemometry (LDA) is a usual method to get flow pattern, which is difficult to operate and has narrow measure region. Particle Image Velocimetry (PIV) can solve these problems. Because the flow speed of valve is too high to catch particles by CCD camera, high-speed camera (Hyspeed : Holland-Photonics) was used. The estimated maximum flow speed was 5m/sec and maximum trackable length is 0.5 cm, so the shutter speed was determined as 1000 frames per sec. Several image processing techniques (blurring, segmentation, morphology, etc) were used for the preprocessing. Particle tracking algorithm and 2-D interpolation technique which were necessary in making gridrized velocity pronto, were applied to this PIV program. By using Single-Pulse Multi-Frame particle tracking algorithm, some problems of PIV can be solved. To eliminate particles which penetrate the sheeted plane and to determine the direction of particle paths are these solving methods. 1-D relaxation fomula is modified to interpolate 2-D field. Parachute artificial heart valve which was developed by Seoul National University and Bjork-Shiely valve was testified. For each valve, different flow pattern, velocity profile, wall shear stress and mean velocity were obtained.

  • PDF

The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

  • Ahn, Chi Bum;Kang, Yang Jun;Kim, Myoung Gon;Yang, Sung;Lim, Choon Hak;Son, Ho Sung;Kim, Ji Sung;Lee, So Young;Son, Kuk Hui;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.49 no.3
    • /
    • pp.145-150
    • /
    • 2016
  • Background: Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods: Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous $O_2$ saturation, and lactate were measured. Results: The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion: After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.