• Title/Summary/Keyword: Cardiac progenitor cell

Search Result 7, Processing Time 0.029 seconds

High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker

  • Choi, He Yun;Park, Ji Hye;Jang, Woong Bi;Ji, Seung Taek;Jung, Seok Yun;Kim, Da Yeon;Kang, Songhwa;Kim, Yeon Ju;Yun, Jisoo;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

Modulation of Human Cardiac Progenitors via Hypoxia-ERK Circuit Improves their Functional Bioactivities

  • Jung, Seok Yun;Choi, Sung Hyun;Yoo, So Young;Baek, Sang Hong;Kwon, Sang Mo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.196-203
    • /
    • 2013
  • Recent accumulating studies have reported that hypoxic preconditioning during ex vivo expansion enhanced the self-renewal or differentiation of various stem cells and provide an important strategy for the adequate modulation of oxygen in culture conditions, which might increase the functional bioactivity of these cells for cardiac regeneration. In this study, we proposed a novel priming protocol to increase the functional bioactivity of cardiac progenitor cells (CPCs) for the treatment of cardiac regeneration. Firstly, patient-derived c-$kit^+$ CPCs isolated from the atrium of human hearts by enzymatic digestion and secondly, pivotal target molecules identified their differentiation into specific cell lineages. We observed that hCPCs, in response to hypoxia, strongly activated ERK phosphorylation in ex vivo culture conditioning. Interestingly, pre-treatment with an ERK inhibitor, U0126, significantly enhanced cellular proliferation and tubular formation capacities of CPCs. Furthermore, we observed that hCPCs efficiently maintained the expression of the c-kit, a typical stem cell marker of CPCs, under both hypoxic conditioning and ERK inhibition. We also show that hCPCs, after preconditioning of both hypoxic and ERK inhibition, are capable of differentiating into smooth muscle cells (SMCs) and cardiomyocytes (CMs), but not endothelial cells (ECs), as demonstrated by the strong expression of ${\alpha}$-SMA, Nkx2.5, and cTnT, respectively. From our results, we conclude that the functional bioactivity of patient-derived hCPCs and their ability to differentiate into SMCs and CMs can be efficiently increased under specifically defined culture conditions such as short-term hypoxic preconditioning and ERK inhibition.

Molecular Nuclear Cardiac Imaging (심장핵의학 분자영상학)

  • Lee, Dong-Soo;Paeng, Jin-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2004
  • Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needic injection with or without catheter guidance. Tk expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

The Potential Therapeutic Effects of Endothelial Progenitor Cells in Ischemic Cardiovascular Disease (허혈성 심혈관 질환의 치료제로서 혈관내피전구세포(EPC)의 가능성에 대한 고찰)

  • Kim, Da Yeon;Kim, Bo Min;Kim, So Jung;Choi, Jin Hee;Kwon, Sang-Mo
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.651-659
    • /
    • 2020
  • Cardiovascular disease is one of the leading causes of death across the world, and gold-standard treatments such as percutaneous coronary intervention and artery bypass grafting have various limitations including myocardial damage and subsequent maladaptive cardiac remodeling. To overcome this, stem-cell therapies are emerging as a promising strategy for cardiovascular regeneration. Endothelial progenitor cells (EPCs) have high potential to proliferate and differentiate into endothelial cells for vascularization and tissue regeneration, and several clinical trials have explored EPC function in tissue repair in relation to clinical safety and improving cardiac function. Consequently, EPC has been suggested as a feasible stem-cell therapy. However, autologous EPC transplantation in cardiovascular disease patients is restricted by risk factors such as age, smoking status, and hypertension that lead to reduced bioactivity in the EPCs. New approaches for improving EPC function and stem-cell efficacy have therefore been suggested, including cell priming, organoid culture systems, and enhancing transplantation efficiency through 3D bioprinting methods. In this review, we provide a comprehensive understanding of EPC characteristics, therapeutic approaches, and the current state of clinical research into EPCs as stem-cell therapy for cardiovascular disease.

In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy

  • Park, Yun-Gwi;Son, Yeo-Jin;Moon, Sung-Hwan;Park, Soon-Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.67-79
    • /
    • 2022
  • Currently, there is no treatment to reverse or cure heart failure caused by ischemic heart disease and myocardial infarction despite the remarkable advances in modern medicine. In addition, there is a lack of evidence regarding the existence of stem cells involved in the proliferation and regeneration of cardiomyocytes in adult hearts. As an alternative solution to overcome this problem, protocols for differentiating human pluripotent stem cell (hPSC) into cardiomyocyte have been established, which further led to the development of cell therapy in major leading countries in this field. Recently, clinical studies have confirmed the safety of hPSC-derived cardiac progenitor cells (CPCs). Although several institutions have shown progress in their research on cell therapy using hPSC-derived cardiomyocytes, the functions of cardiomyocytes used for transplantation remain to be those of immature cardiomyocytes, which poses a risk of graft-induced arrhythmias in the early stage of transplantation. Over the last decade, research aimed at achieving maturation of immature cardiomyocytes, showing same characteristics as those of mature cardiomyocytes, has been actively conducted using various approaches at leading research institutes worldwide. However, challenges remain in technological development for effective generation of mature cardiomyocytes with the same properties as those present in the adult hearts. Therefore, in this review, we provide an overview of the technological development status for maturation methods of hPSC-derived cardiomyocytes and present a direction for future development of maturation techniques.

Clinical Outcomes and Prognosis of Patients with Stent Fracture after Successful Drug-Eluting Stent Implantation (관상동맥 약물 방출 스텐트 삽입 후 스텐트 골절에 대한 임상결과 및 예후)

  • Kim, In-Soo;Han, Jae-Bok;Jang, Seong-Joo
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • Many studies have suggested that in the era of Drug-Eluting Stents(DES) are one of the causes of In-Stent Restenosis(ISR) of Stent Fracture(SF). The present study sought to evaluate clinical characteristics of patients with stent fracture after successful DES implantation. The 4,701 patients were selected for analysis who underwent a follow-up coronary angiography irrespective of ischemic symptoms. The overall incidence of SF was 32 patients(male:female=19:13, Av. age $62.44{\pm}9.8$year, 0.68%). Fractures of Sirolimus-Eluting Stents(SES), Paclitaxel-Eluting Stents(PES), Biolimus A9-Eluting Stents(BES), Everolimus-Eluting Etents(EES), Endothelial Progenitor Cell Capture Stent(EPC) and Zotarolimus-Eluting Stents(ZES) are accounted for 19(59.4%), 9(28.1%), 2(6.3%), 1(3.1%), 1(3.1%) and 0(0%) respectively. SF developed in the left Anterior Dscending(LAD) artery in 16 patients(50%) and in complex(type B2, C) lesions in 25 patients(69.4%). Ten patients were treated with heterogenous DES, the rest being treated with either homogenous DES(3 patients), plain old balloon angioplasty(3 patients), or conservative medical treatment(17 patients). None of the patients with SF suffered from cardiac death during a follow-up period of $32.9{\pm}12.4$ months. The overall rate of DES fracture over up to 3.7 years of follow-up was 0.68% with higher incidence in SES than in PES. SF frequently occurred in the LAD artery and in complex lesions. Of the patients with SF, coronary intervention was performed only when the binary restenosis lesion was significant. During the follow-up, patients with SF have continued on combination antiplatelet therapy. There is a very low rate of major adverse cardiac events(post-detection of SF), especially cardiac death associated with SF.