• Title/Summary/Keyword: Cardiac Function

Search Result 567, Processing Time 0.023 seconds

Echocardiographic Evaluation of Cardiovascular Function in Cloned Dogs (심장 초음파를 이용한 복제견의 심혈관계 기능 평가)

  • Yeo, Ju-Hwan;Kim, Jae-Hwan;Kim, So-Young;Lee, Seung-Jun;Park, Noh-Won;Oh, Hyun-Ju;Kim, Min-Jung;Kim, Geon-A;Jo, Young-Kwang;Lee, Byeong-Chun;Eom, Kidong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The purpose of this study was to compare echocardiographic parameters of cloned beagle dogs with the previously reported reference range. Seven cloned dogs were assessed for anatomical features and cardiac function through left- and right-sided heart and right ventricle outflow tract from M-mode, 2D-mode, pulsed wave Doppler and tissue Doppler imaging. In all the cloned dogs, there were no abnormalities in anatomical structure and measurements were within the normal reference range. In addition, left- and right-sided myocardial function was within the normal reference range. Especially, pulmonary hypertension and right-sided heart failure frequently encountered in cloned animals were not recognized in cloned dogs. In conclusion, no evidence of cardiovascular dysfunction in mature cloned dogs could be identified either at birth or the growing stage in this study. Therefore, serious adverse effects of somatic cell nuclear transfer technology including transgenesis on cardiac morphology and function were not found in cloned dogs.

Role of Intracellular Taurine in Monensin-induced $Na^+,\;Ca^{++}$ Accumulation and Mechanical Dysfunction in Isolated Rat Hearts

  • Kim, Young-Hoon;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.537-546
    • /
    • 1997
  • It has been postulated that the intracellular taurine is co-transported with $Na^+$down a concentration gradient and prevents the intracellular accumulation of sodium. It is therefore, expected that an elevated level of intracellular taurine prevents the sodium-promoted calcium influx to protect the cellular damages associated with sodium and calcium overload. In the present study, we evaluated the effects of intra- and extracellular taurine on the myocardial $Na^+$and$Ca^{++}$ contents and the cardiac functions in isolated rat hearts which were loaded with sodium by monensin, a $Na^+-ionophore$. Monensin caused a dose-dependent increase in intracellular $Na^+$ accompanied with a subsequent increase in intracellular $Ca^{++}$ and a mechanical dysfunction. In this monensin-treated heart, myocardial taurine content was decreased with a concomittent increase in the release of taurine. The monensin-induced increases in intracellular $Na^+$, $Ca^{++}$ and depression of cardiac function were prevented in the hearts of which taurine content had been increased by high-taurine diet. Conversely, in the hearts of which taurine concentration gradient had been decreased by addition of taurine in the perfusate, the monensin-induced increases in $Na^+$, $Ca^{++}$ and functional depression were accelerated. These results suggest that taurine, depending on the intra-extracellular concentration gradient, can affect intracellular sodium and calcium concentrations, and that an increased intracellular taurine may play a role in protection of myocardial dysfunction associated with the sodium and calcium overload.

  • PDF

Prevention of Ischemic Damage in Working Rat Hearts by Calcium Channel Blocker and Calmodulin Inhibitors (흰쥐심장의 허혈손상에 대한 Calcium 통로봉쇄제와 Calmodulin 억제제의 예방효과에 대한 연구)

  • 성시찬
    • Journal of Chest Surgery
    • /
    • v.22 no.6
    • /
    • pp.901-913
    • /
    • 1989
  • This study was investigated under the postulation that activation of intracellular calcium- calmodulin complex during ischemia-reperfusion leads to myocardial injury. The protective effects of calcium channel blocker, diltiazem and calmodulin inhibitors, trifluoperazine, flunarizine and calmidazolium from ischemic injury in rat hearts were observed by using Langendorff apparatus when the antagonists were infused for 3 min in the beginning of ischemia. Thereby, an increase in resting tension developed during 30-min ischemia was analyzed with regard to [1] the degree of cardiac functional recovery following 60-min reperfusion, [2] changes in biochemical variables evoked during 30-min ischemia. The results obtained were as follows: l. In the ischemic group, the resting tension was increased by 4.1*0.2 g at 30-min ischemia. However, the increase in resting tension was markedly reduced not only by pretreatment with diltiazem [3.3 p M] but also with calmodulin inhibitors, trifluoperazine [3.3 p M], flunarizine [0.5 p M] and calmidazolium [0.5 p M], respectively. 2. Recovery of myocardial contractility, +dF /dt and coronary flow were much reduced when evoked by reperfusion in the ischemic group. These variables were significantly improved either by pretreatment with diltiazem or with calmodulin inhibitors. 3. The resting tension increment evoked during ischemia was significantly inversely correlated with the degree of cardiac function recovered during reperfusion. 4. Following 30-min ischemia, the production of malondialdehyde and release of lysosomal enzyme were much increased in association with a decrease in creatine kinase activity. 5. The increases in malondialdehyde production and release of free lysosomal enzyme were suppressed by pretreatment with calmodulin inhibitors as well as diltiazem. Likewise, the decrease of creatine kinase activities was prevented by these calcium antagonists. With these results, it is indicated that a increase in resting tension observed during ischemia has an inverse relationship to the cardiac function recovered following reperfusion, and further, the later may be significantly dependent on the degree of biochemical alterations occurred during ischemia such as decrease in creatine kinase activity, increased production of malondialdehyde and increased release of free lysosomal enzyme. Thus it is concluded that calmodulin plays a pivotal role in the process of ischemic injury.

  • PDF

Acute Hemodynamic Effects of CJ-10513, an Angiotensin IIReceptor Antahonest, in Dog Treated with High Friquency Ventricular Pacing (안지오텐신 ll 수용체 길항약 CJ-10513이 고민도 심실 pacing 천에서의 혈행동태에 미치는 영향)

  • Kim, Young-Hoon;Jeong, Seong-Mok;Shin, Jae-Kyu;Choi, Jae-Mook;Jeong, Seong-Hak;Bae, Hoon;Lee, Gun-Ho;Kim, Je-Hak;An, Yang-Soo
    • Biomolecules & Therapeutics
    • /
    • v.6 no.2
    • /
    • pp.199-203
    • /
    • 1998
  • Acute hemodynamic effects of CJ-18513, a non-peptide angiotensin IIreceptor antagonist, were examined in mongrel dogs treated with high frequency ventricular pacing for one week. Rapid ventricular pacing reduced mean blood pressure (mBP), Lvdp/dt and cardiac output (CO), and increased the left ventricular end-diastolic pressure (LVEDP) and pulmonary capillary wedge pressure (PCWP). Continuous infusion of CJ-10513 at doses of 10 and 20$\mu$g/kg/min, respectively, for 30 minutes reduced mBP, LVEDP and myocardial oxygen consumption rate (MVO,) and shifted the cardiac function curve (CO-LVEDP ourve) to the left in this dog model. In conclusion, CJ-10513 decreased the preload and afterload and increased the cardiac function in dogs with pacing-induced heart failure.

  • PDF

Ex Vivo Lung Perfusion of Cardiac-death Donor Lung in Pigs

  • Paik, Hyo Chae;Haam, Seok Jin;Park, Moo Suk;Song, Joo Han
    • Korean Journal of Transplantation
    • /
    • v.28 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • Background: Lung transplantation (LTx) is a life-saving treatment for patients with end-stage lung disease; however, the shortage of donor lungs has been a major limiting factor to increasing the number of LTx. Growing experience following LTx using donor lungs after cardiac death (DCD) has been promising, although concerns remain. The purpose of this study was to develop a DCD lung harvest model using an ex vivo lung perfusion (EVLP) system and to assess the function of presumably damaged lungs harvested from the DCD donor in pigs. Methods: The 40 kg pigs were randomly divided into the control group with no ischemic lung injury (n=5) and the study group (n=5), which had 1 hour of warm ischemic lung injury after cardiac arrest. Harvested lungs were placed in the EVLP circuit and oxygen capacities (OC), pulmonary vascular resistance (PVR), and peak airway pressure (PAP) were evaluated every hour for 4 hours. At the end of EVLP, specimens were excised for pathologic review and wet/dry ratio. Results: No statistically significant difference in OC (P=0.353), PVR (P=0.951), and PAP (P=0.651) was observed in both groups. Lung injury severity score (control group vs. study group: 0.700±0.303 vs. 0.870±0.130; P=0.230) and wet/dry ratio (control group vs. study group: 5.89±0.97 vs. 6.20±0.57; P=0.560) also showed no statistically significant difference between the groups. Conclusions: The function of DCD lungs assessed using EVLP showed no difference from that of control lungs without ischemic injury; therefore, utilization of DCD lungs can be a new option to decrease the number of deaths on the waiting list.

Prediction of Pumping Efficacy of Left Ventricular Assist Device according to the Severity of Heart Failure: Simulation Study (심실의 부하감소 측면에서 좌심실 보조장치의 최적 치료시기 예측을 위한 시뮬레이션 연구)

  • Kim, Eun-Hye;Lim, Ki Moo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.22-28
    • /
    • 2013
  • It is important to begin left ventricular assist device (LVAD) treatment at appropriate time for heart failure patients who expect cardiac recovery after the therapy. In order to predict the optimal timing of LVAD implantation, we predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used LVAD-implanted cardiovascular system model which consist of 8 Windkessel compartments for the simulation study. The time-varying compliance theory was used to simulate ventricular pumping function in the model. The ventricular systolic dysfunction was implemented by increasing the end-systolic ventricular compliance. Using the mathematical model, we predicted cardiac responses such as left ventricular peak pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous and pulsatile LVAD. Left ventricular peak pressure, which indicates the ventricular loading condition, decreased maximally at the 1st level heart-failure under pulsatile LVAD therapy and 2nd level heart-failure under continuous LVAD therapy. We conclude that optimal timing for pulsatile LVAD treatment is 1st level heart-failure and for continuous LVAD treatment is 2nd level heart-failure when considering LVAD treatment as "bridge to recovery".

Double Valve Replacement: report of 5 cases (연합판막질환의 판치환수술)

  • 노중기
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.355-360
    • /
    • 1979
  • Mitral and aortic valve replacement with tricuspid annuloplasty was undertaken in 5 patients out of 38 valvular surgery between the period from Jan. 1977 to May 1979 in the Dept. of Thoracic and Cardiovascular Surgery in Korea University Hospital. All were male patients with age ranging from 18 to 42 years, and preoperative evaluation revealed one case in Class IV, and four cases in Class III according to the classification of NYHA. Preoperative diagnosis was confirmed by routine cardiac study including retrograde aorto- and left ventriculography, and there were two cases with MSi+ASi+Ti, two cases with MSi+Ai+Ti, and one case with Mi+Ai+Ti. Double valve replacement was performed under the hypothermic cardiopulmonary bypass with total pump time of 247 min. in average ranging from 206 min. to 268 min. During aortic valve replacement, left coronary perfusion was done in the first two cases, and cardiac arrest with cardioplegic solution proposed by Bretschneider was applied in the remained three cases. Starr-Edwards, Bjork-Shiley prosthetic valves and Carpentier-Edwards tissue valve were replaced in the aortic area, and Carpentier-Edwards and Angell-Shiley tissue valves were replaced in the mitral area with each individual combination [three prosthetic and two tissue valves in the aortic, and five tissue valves in the mitral area respectively]. Postoperative recovery was uneventful in all cases except one case with hemopericardium, which was managed with pericardiectomy on the postoperative 10th day in good result. Follow-up after double valve replacement of the all five cases for the period from 6 months to 33 months revealed satisfactory adaptation in social activity and occupation with cardiac function of Class I according to the classification of NYHA In all five cases.

  • PDF

A Case of Clinical Improvement after Enzyme Replacement Therapy in Pompe Disease (효소 보충 치료로 호전을 보인 Pompe병 1례)

  • Jeon, You Hoon;Eun, Baik Lin;Lee, Dong Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • Pompe disease is a genetic disorder caused by a deficiency of acid ${\alpha}$-glucosidase (GAA). This enzyme defect results in lysosomal glycogen accumulation in multiple tissues and cell types, with cardiac, skeletal, and smooth muscle cells the most seriously affected. Infantile-onset Pompe disease is uniformly lethal. Affected infants present in the first few months of life with hypotonia, generalized muscle weakness, and a hypertrophic cardiomyopathy, followed by death from cardiorespiratory failure or respiratory infection, usually by 1 year of age. Late-onset forms is characterized by a lack of severe cardiac involvement and a less severe short-term prognosis. Enzyme replacement therapy for Pompe disease is intended to address directly the underlying metabolic defect via intravenous infusions of recombinant human GAA to provide the missing enzyme. We experienced one case of Pompe disease in 3-years old boy that has improved his exercise ability and cardiac function after GAA enzyme replacement therapy.

  • PDF

Myocardial Protection of Contractile Function After Global Ischemia by Compound K in the Isolated Heart

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • Ginsenosides are among the most well-known traditional herbal medicines frequently used for the treatment of cardiovascular symptoms in South Korea. The anti-ischemic effects of compound K (CK), a metabolite of ginsenoside Rb1, on ischemia-induced isolated rat hearts were investigated through the analyses of the changes in the hemodynamics (blood pressure, aortic flow, coronary flow, and cardiac output) and the measurement of the infarct region. The subjects in this study were divided into four groups: the normal control, the CK-alone group, the ischemia-induced group without any treatment, and the ischemia-induced group treated with CK. No significant differences in perfusion pressure, aortic flow, coronary flow, and cardiac output were found between the groups before ischemia was induced. The oxygen and buffer supply was stopped for 30 min to induce ischemia 60 min after reperfusion in the isolated rat hearts, and the CK was administered 5 min before ischemia induction. The CK treatment significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output under ischemic conditions. In addition, the hemodynamics (except for the heart rate) of the group treated with CK significantly recovered 60 min after reperfusion, unlike in the control group. CK significantly limited the infarct. These results suggest that CK treatment has distinct anti-ischemic effects in an exvivo model of an ischemia-reperfusion-induced rat heart.

Protective Roles of Ginseng Saponin in Cardiac Ischemia and Reperfusion Injury

  • Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.283-293
    • /
    • 2009
  • Ginsenosides, one of the most well-known traditional herbal medicines, are used frequently in Korea for the treatment of cardiovascular symptoms. The effects of ginseng saponin on ischemia-induced isolated rat heart were investigated through analyses of hemodynamic changes including perfusion pressure, aortic flow, coronary flow, and cardiac output. Isolated rat hearts were perfused and then subjected to 30 min of global ischemia followed by 60 min of reperfusion with modified Kreb's Henseleit solution. Myocardial contractile function was continuously recorded. Ginseng saponin administered before inducing ischemia significantly prevented decreases in perfusion pressure, aortic flow, coronary flow, and cardiac output. The ginseng saponin administered group significantly recovered all of the hemodynamic parameters, except heart rate, after ischemia-reperfusion (I/R) compared with ischemia control. The intracellular calcium ($[Ca^{2+}]_i$) content in rat neonatal cardiomyocytes was quantitatively determined. Administration of ginseng saponin significantly prevented $[Ca^{2+}]_i$ increase that had been induced by simulated I/R in vitro (p<0.01) in a dose-dependent manner, suggesting that the cardioprotection of ginseng saponin is mediated by the inhibition of $[Ca^{2+}]_i$ increase. Overall, we found that the administration of ginseng saponin has cardioprotective effects on the isolated rat heart after I/R injury. These results indicate that ginseng saponin has distinct cardioprotective effects in an I/R-induced rat heart.