• 제목/요약/키워드: Carboxymethyl cellulose (CMC)

검색결과 127건 처리시간 0.027초

Cloning and Characterization of Cellulase Gene (cel5B) from Cow Rumen Metagenome

  • Kang, Tae-Ho;Kim, Min-Keun;Barman, Dhirendra Nath;Kim, Jung-Ho;Kim, Hoon;Yun, Han-Dae
    • 농업생명과학연구
    • /
    • 제46권2호
    • /
    • pp.129-137
    • /
    • 2012
  • A carboxymethyl cellulase gene, cel5B, was cloned, sequenced, and expressed in Escherichia coli. pRCS20 in E. coli was identified from metagenomic cosmid library of cow rumen for cellulase activity on a carboxymethyl cellulose agar plates. Cosmid clone (RCS20) was partially digested with Sau3AI, ligated into BamHI site of pBluescript II SK+ vector, and transformed into E. coli $DH5{\alpha}$. The insert DNA of 1.3 kb was obtained, designated cel5B, which has the activity of hydrolyzation of CMC. The cel5B gene had an open reading frame (ORF) of 1,059 bp encoding 352 amino acids with a signal peptide of 48 amino acids and the conserved region, VIYEIYNEPL, belongs to the glycosyl hydrolase family 5. The molecular mass of Cel5B protein expressed from E. coli $DH5{\alpha}$ exhibited to be about 34 kDa by CMC-SDS-PAGE. The optimal pH was 8.0, and the optimal temperature was about $50^{\circ}C$ for its enzymatic activity.

제지용 면 펄프의 CMC 전처리 및 혼합 고해특성 연구 (Study on the Beating Properties of CMC Pre-treated and Mixed Cotton Linter Pulp)

  • 신현식;이진호;김덕기;박종문
    • 펄프종이기술
    • /
    • 제46권4호
    • /
    • pp.11-20
    • /
    • 2014
  • The objective of this study was to investigate the beating properties of two types of cotton pulps such as "cotton lint mixed pulp" and "cotton linter pulp". In order to improve refining characteristics, the effects of carboxymethyl-cellulose (CMC) pre-treatment, mixing ratio changes of cotton lint mixed pulp and cotton linter pulp, and refining load changes were analyzed. In mill application, it was possible to improve the refining characteristics and maintained the strength properties of the paper by applying increasing ratio of cotton linter pulp mixing and controlling the refining methods.

Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties

  • Bang, Won Yeong;Kim, Dong Hyun;Kang, Mi Dan;Yang, Jungwoo;Huh, Taelin;Lim, Young Woon;Jung, Young Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1366-1372
    • /
    • 2021
  • Bacterial nanocellulose (BNC) is a biocompatible material with a lot of potential. To make BNC commercially feasible, improvements in its production and surface qualities must be made. Here, we investigated the in situ fermentation and generation of BNC by addition of different cellulosic substrates such as Avicel and carboxymethylcellulose (CMC) and using Komagataeibacter sp. SFCB22-18. The addition of cellulosic substrates improved BNC production by a maximum of about 5 times and slightly modified its structural properties. The morphological and structural properties of BNC were investigated by using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy and X-ray diffraction. Furthermore, a type-A cellulose-binding protein derived from Clostridium thermocellum, CtCBD3, was used in a novel biological analytic approach to measure the surface crystallinity of the BNC. Because Avicel and CMC may adhere to microfibrils during BNC synthesis or crystallization, cellulose-binding protein could be a useful tool for identifying the crystalline properties of BNC with high sensitivity.

Isolation of cellulosic biomass degrading microorganisms from different sources for low cost biofuel production

  • ;김철환;이지영;;박혁진;;김성호;김재원
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2011년도 춘계학술발표회 논문집
    • /
    • pp.81-91
    • /
    • 2011
  • Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. Recently, a large amount of studies regarding the utilization of lignocellulosic biomass as a good feedstock for producing fuel ethanol is being carried out worldwide. The plant biomass is mainly composed of cellulose, hemicellulose and lignin. The main challenge in the conversion of biomass into ethanol is the complex, rigid and harsh structures which require efficient process and cost effective to break down. The isolation of microorganisms is one of the means for obtaining enzymes with properties suitable for industrial applications. For these reasons, crude cultures containing cellulosic biomass degrading microorganisms were isolated from rice field soil, cow farm soil and rotten rice straw from cow farm. Carboxymethyl cellulose (CMC), xylan and Avicel (microcrystalline cellulose) degradation zone of clearance on agar platefrom rice field soil resulted approximately at 25 mm, 24 mm and 22 mm respectively. As for cow farm soil, CMC, xylan and Avicel degradation clearancezone on agar plate resulted around at 24mm, 23mm and 21 mm respectively. Rotten rice straw from cow farm also resulted for CMC, xylan and Avicel degradation zone almost at 24 mm, 23 mm and 22 mm respectively. The objective of this study is to isolatebiomass degrading microbial strains having good efficiency in cellulose hydrolysis and observed the effects of different substrates (CMC, xylan and Avicel) on the production of cellulase enzymes (endo-glucanase, exo-glucanase, cellobiase, xylanase and avicelase) for producing low cost biofuel from cellulosic materials.

  • PDF

볏짚펄프를 이용한 성형포장재의 물성에 관한 연구 (Studies on the Physical Properties of Molded Packaging Material Using Rice-Straw Pulp)

  • 오승원;강진하
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권1호
    • /
    • pp.79-87
    • /
    • 1999
  • 포장재로 많이 사용되어왔던 발포 폴리스틸렌(EPS)이 환경공해의 원인이 되므로 이를 대체하기 위하여 농업부산물인 볏짚을 포장재의 원료로 이용하고자 볏짚펄프로 성형포장재를 제조하고, 첨가제인 전분, rosin size제, CMC, PEG, AKD, PAM을 첨가량별로 첨가하여 그 물성변화를 무첨가시와 비교하였다. 첨가제첨가시 포장재의 물성 및 경제적인 면에서 AKD 1%를 첨가하는 것이 가장 효과적인 것으로 판단되며, 흡수도는 모든 첨가제에서 첨가량이 증가함에 따라 무첨가시보다 감소되어 첨가제가 수분의 흡수를 억제하여 내수성이 증가하였다.

  • PDF

도열병균에서 추출한 Cx효소의 순화 및 특성에 관한 연구 (Studies on the Isolation, Purification and Characterization of a Cx Enzyme Produced by Pyricularia oryzae, $C-7^{+t}$)

  • 김상호;김은수
    • 한국균학회지
    • /
    • 제10권2호
    • /
    • pp.67-73
    • /
    • 1982
  • 2% CMC (Carboxymethyl cellulose)를 탄소원으로 하여 $28^{\circ}C$에서 8일간 배양한 도열병균 (Pyriculariaoryzae, $C-7^{+t}$)의 배양액을$(NH_4)_2SO_4$ 염석, Sephadex G-150 및 DEAE-Sephadex A-25 column chromatography를 거쳐 순화하였다. 순화결과 $F_1,\;F_2,\;F_3$ 3개의 CMCase $(C_x)$, 1개의 Avicelase $(C_1)$ 및 1개의 ${\beta}-glucosidase$를 얻었는데 그중 $C_1$ 효소의 $F_3$만을 골라 실험을 계속했다. 이 효소의 활성도는 pH 6.0 과 $40^{\circ}C$에서 가장 높았으며 $40^{\circ}C$까지 안정한 효소인 것을 알 수 있었다. 이 효소의 Km과 Vmax값은 각각 $2.8{\times}10^{-3}mM$, 5.9 mmoles/hour이었고, 분자량은 Sephadex G-150 column chromatography에 의해 약 80,000으로 나타났다. 약 7배로 순화된 이 효소의 순화정도를 polyacrylamide gel electrophoresis에 의해 검증한 결과 1개의band를 나타냈다.

  • PDF

디지털 프린팅 견직물의 색상 변화 및 견뢰도 - 혼합 전처리제의 영향 (Color Fastness of Digital Textile Printing on Silk Fabrics - The effect of the mixed pre-treatment agent)

  • 정동석;천태일
    • 한국의류산업학회지
    • /
    • 제15권5호
    • /
    • pp.808-814
    • /
    • 2013
  • In this study, The mixture of three kinds of pre-treatment agents, Carboxymethyl cellulose sodium salt(CMC), Sodium alginate and Dextrin, have been prepared for the better coloration of digital textile printing. To get sharpness of outline during digital printing process, the optimal formulation is the CMC and Sodium alginate mixture 1:1 ratio by volume. Cyan, Yellow, and Black colours are excellent on the Sodium alginate mixtures. But, Magenta is excellent in the CMC and Dextrin mixture. Sharpness and printability are closely related to viscosity of the mixture. The most optimal sharpness of outline achieved with a consideration of coloring, and field operations account for production when the viscosity of the mixed pre-treatment agent approximately is 10~13 cSt. Change in shade and staining of wash fastness for all the treated samples with the mixtures rated 4-5 grade. Both dry rubbing fastness to shade change and staining are good in the treated samples, whereas wet rubbing fastness rated 2-3 grade. To improve wet rubbing fastness, the Sodium alginate and Dextrine mixture, which rated 3-4 grade for Black color, is applicable. With exception of 3 rating to black color, Light fastness is 4 rating for the remaining three colors in the regardless of treatment condition and mixing of the pre-treatment agent. Dry cleaning fastness of all samples are also 4-5 rating.

방사선 가교 기술을 이용한 유효성분 방출력이 우수한 하이드로겔 제조 및 특성 분석 (Characterization and Preparation of the Hydrogel has Excellent Release Effect of the Active Ingredients Using a Radiation Cross-linking Technology)

  • 황승현;안성준;박종석;정성린;권희정;이동윤;임윤묵
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.199-207
    • /
    • 2015
  • Typical radiation cross-linked hydrogels has the characteristic that high water content, but low emission efficiency of active ingredients. Therefore, the hydrogel was prepared by the addition to collagen, which is closely related to the formation of skin wrinkles in biocompatibility and highly water-soluble carboxymethyl cellulose sodium salt (CMC) in order to preparation of hydrogels has excellent emission efficiency of active ingredients. Hydrogels were prepared by dissolving CMC and collagen each of 0.5%, 10% concentration in deionized water. Then, prepared hydrogels are performed by gamma-radiation at 1, 3, 5 kGy irradiation dose. The results showed that the gel fraction of after irradiated 3 kGy hydrogel was higher than before irradiated gelation as long as the 55.3%. The swelling rate of irradiated 3 kGy hydrogel was lower than the non-irradiated sample. The compressive strength of 3 kGy irradiated hydrogel was the highest. The visco-elastic did not show any significant differences, even after irradiation. The CMC hydrogel in this study suggested a potential use as a material for the mask pack for improved emission efficiency of the active ingredient and anti-wrinkles.

Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels

  • Luo, Wanhe;Liu, Jinhuan;Zhang, Shanling;Song, Wei;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.1.1-1.11
    • /
    • 2022
  • Background: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. Objectives: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. Methods: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. Results: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 ㎍/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. Conclusions: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.

청국장 발효균주 Bacillus licheniformis B1의 ${\beta}$-1,4-glucanase 특성 (Characterization of ${\beta}$-1,4-Glucanase Activity of Bacillus licheniformis B1 in Chungkookjang)

  • 황재성;유형재;김성조;김한복
    • 미생물학회지
    • /
    • 제44권1호
    • /
    • pp.69-73
    • /
    • 2008
  • 대두가 발효된 청국장에는 미생물, 다양한 효소와 생리활성물질이 존재한다. 청국장의 탄수화물을 분해하는 cellulase에 대한 연구는 많지 않다. Oligosaccharide는다양한 생리활성을 지니고 있다. Congo red test 및 활성염색을 통해, 효소액이 cellulase를 포함하는 것을 확인했다. 청국장 발효 균주 Bacillus licheniformis B1이 분비하는 cellulase활성의 최적 pH와 온도는 각각 10과 $40^{\circ}C$이었다. TLC분석을 통해 효소액은 carboxymethyl cellulose (CMC)를 분해하여 2탄당 이상을 생성함을 확인하였다. 본 균주를 이용해서 제조한 보리 청국장에서는 효소의 활성이 증가되었다. 본 균주의 cellulase 유전자를 클로닝하여 분석한 결과, 본 효소는 ${\beta}$-1,4-glucanase였으며, 전체 coding 영역 $10{\sim}460$번째 아미노산 영역 중, 32군데서 polymorphism을 보였다.