• Title/Summary/Keyword: Carboxymethyl cellulose (CMC)

Search Result 127, Processing Time 0.028 seconds

Carboxymethyl cellulose/polyethylene glycol superabsorbent hydrogel cross-linked with citric acid

  • Lee, Deuk Yong;Chun, Cheolbyong;Son, Siwon;Kim, Yena
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.107-114
    • /
    • 2022
  • Carboxymethyl cellulose/poly(ethylene glycol) (CMC/PEG) hydrogels crosslinked with citric acid (CA) are synthesized to evaluate the effect of CMC molecular weight (Mw), PEG and CA concentration on the optical property, swelling rate (SR), degradation rate (DR), and cytotoxicity and cell proliferation of hydrogels. For crosslinked CMC/PEG hydrogels, the FT-IR peak intensity associated with hydroxyl groups decreases due to PEG intercalation (esterification crosslinking) between CMC chains in a similar manner as the concentration of CA crosslinker increases. Crosslinked CMC (Mw = 90,000)/PEG hydrogels with 10 % CA dissolve regardless of PEG content. However, the SR of the CMC (Mw = 250,000)/PEG hydrogels decrease from 4923 % to 168 % with increasing PEG and CA concentrations from 0 to 20 % and from 0 to 25 %, respectively. As the Mw of CMC increases, the DR of the hydrogel is greatly improved. CMC (Mw = 250,000)/PEG10 hydrogels with 10 % CA exhibit the optimum properties of high absorbing capacity (3,200 %) with moderate DR (54 %), stiffness (1.39 ± 0.19 GPa), and cell viability (94.8 ± 1.3 %). CA-crosslinked CMC/PEG hydrogels are highly suitable for wound dressing or personal care applications due to their non-toxicity, good cell proliferation, SR, and mechanical properties.

Radiation-Crosslinked Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix Hydrogel Films to Prevent Peritoneal Adhesions with physical properties and anti-adhesivity (방사선 가교된 유착방지용 Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix 수화젤 필름의 물리적 특성 및 부착 방지 평가)

  • Jeong, Sung In;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Song, Bo Ram;Kim, Young Jick;Min, Byoung Hyun;Kim, Moon Suk;Lim, Youn-Mook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • In this study, intermolecular crosslinked carboxymethyl cellulose sodium salt (CMC) and porcine Cartilage Acellular Matrix (PCAM) blended hydrogel films for anti-adhesive barriers were prepared by gamma-ray radiation. The effects of the CMC/PCAM concentration and blending ratio on the morphology, gel fraction, gel strength, and degree of swelling were determined. The results indicated that crosslinked CMC/PCAM films show significantly lower the gel-fraction than CMC films. The degree of attachment and proliferation of human vascular endothelial cells on CMC/PCAM films was lower than the CMC films. We show the capacity of the CMC and PCAM to be hydrogel films, and the ability to reduce cell adhesion and proliferation on these films by modification with cell anti-adhesion molecules of PCAM. In conclusion, this study suggests that radiation cross-linked CMC/PCAM hydrogel films endowed with anti-adhesion ligands may allow for improved regulation of cell anti-adhesion behavior for prevent peritoneal adhesions.

Applying Edible Coating Materials for Extending Storage Life of Peeled-Garlic (가식성 코팅용액을 이용한 박피마늘의 저장성 증대)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • This study was conducted to increase the shelf life of peeled-garlic by edible coating material such as carboxymethyl cellulose(CMC) with sodium benzoate, citric acid and lecithin. Peeled-garlic were stored in a storage chamber at $25^{\circ}C$ and were taken at regular intervals for analysis. The changes in weight loss, colour change, browning, decaying loss and texture of the coated samples with storage time were investigated in comparison with the uncoated samples to determine the delay in the deterioration time of the samples. The coatings contributed to a lower reduction in weight loss. The coatings decreased the browning and decaying loss loses in comparison to the uncoated peeled-garlic. It was possible to extend the storage period with lower weight loss until 32 days by coating peeled-garlic surfaces with emulsions containing CMC. It was found that the emulsion prepared using the mixture of lecithin, CMC, citric acid, sodium benzoate and water was suitable for the coating of peeled-garlic.

The Effect of Hyaluronate-Carboxymethyl Cellulose on Tissue Adhesion after Achilles Tendon Tenorraphy in Rats (백서의 아킬레스 건 봉합 후 Hyaluronate-Carboxymethyl cellulose가 조직 유착에 미치는 영향)

  • Lee, Jung-Hee;Jeong, Bi-O;Kim, Gou-Young
    • Journal of Korean Foot and Ankle Society
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of Sodium hyaluronate-Sodium carboxymethyl cellulose (HA-CMC) on tissue adhesion after tenorrhapy in tenotomized Achilles tendon of the Sprague-Dawley rat. Materials and Methods: Twenty-eight legs of 14 Sprague-Dawley rat were used in study. After tenotomy of the Achilles tendons, tenorrhaphies were performed. Simple tenorrhaphy without any other procedures were performed on the left Achilles tendons (control group), and additional HA-CMC injections were done prior to the tenorrhaphy on the right Achilles tendons (HA-CMC group). Gross and histological examinations were made to identify differences between the two groups, 1, 2, 6, 8, 10, 12 and 14 weeks respectively. Results: Distinct decrease in granulation tissues and adhesions were seen in the HA-CMC group during gross inspection at 6 and 8 week after the operation. On histological analysis of the HA-CMC group, although increased infiltrations of inflammation cells were observed during 1 week, less adhesion were seen at 6, 8 and 10 weeks after the operation. In HA-CMC group, superior healing processes were seen at 6, 8 and 10 weeks and less fibrotic changes, compared to control group, were seen at 2 and 6 weeks. Conclusion: Prevention of adjacent tissue adhesion was made possible through decrease in collagen deposition and fibrosis by injecting HA-CMC before tenorrhaphy of Achilles tendon. Also, histologically faster healing process of the collagen fibers within the Achilles tendon was observed.

  • PDF

Effect of combined sodium hyaluronate and carboxymethyl cellulose on ocular surface in rat dry eye model

  • Moon, Jong-Gab;Ku, Sae-Kwang;Kwon, Young-Sam
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.3
    • /
    • pp.155-160
    • /
    • 2016
  • This study was conducted to evaluate three different mixed formulations of sodium hyaluronate (SH) and carboxymethyl cellulose (CMC) using a low-humidity air flow-induced rat dry eye model and determine the most suitable mixture. The total thickness of the cornea, corneal epithelial thickness, corneal stroma thickness, damaged corneal epithelium percentage region, thickness of the bulbar conjunctiva epithelium, number of goblet cells, goblet cell occupation percentage region, and damaged bulbar conjunctiva epithelium percentage region were measured by histomorphological evaluation. After 5 h exposure to drying airflow, the thickness of the cornea and conjunctiva was decreased with desquamation of the corneal and conjunctiva epithelium. However, these dry eye symptoms were markedly inhibited by treatment with the reference and test formulations. More favorable effects on decreased thickness were detected in response to the CMC than the SH. However, SH had a greater protective effect against corneal and conjunctiva epithelial damage. The application of a mixture of 0.1% SH and 0.2% CMC showed more favorable effects on the corneal and conjunctival damage and the stabilization of the ocular surface than SH or CMC alone.

Partially Carbonized Poly (Acrylic Acid) Grafted to Carboxymethyl Cellulose as an Advanced Binder for Si Anode in Li-ion Batteries

  • Cho, Hyunwoo;Kim, Kyungsu;Park, Cheol-Min;Jeong, Goojin
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • To improve the performance of Si anodes in advanced Li-ion batteries, the design of the electrode plays a critical role, especially due to the large volumetric expansion in the Si anode during Li insertion. In our study, we used a simple fabrication method to prepare Si-based electrodes by grafting polyacrylic acid (PAA) to a carboxymethyl cellulose (CMC) binder (CMC-g-PAA). The procedure consists of first mixing nano-sized Si and the binders (CMC and PAA), and then coating the slurry on a Cu foil. The carbon network was formed via carbonization of the binders i.e., by a simple heat treatment of the electrode. The carbon network in the electrode is mechanically and electrically robust, which leads to higher electrical conductivity and better mechanical property. This explains its long cycle performance without the addition of a conducting agent (for example, carbon). Therefore, the partially carbonized CMC-g-PAA binder presented in this study represents a new feasible approach to produce Si anodes for use in advanced Li-ion batteries.

Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation

  • Shin, Ji-Yeon;Jeong, Heeseok;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • Polyvinyl alcohol/sodium carboxymethyl cellulose (PVA/NaCMC) hydrogels were prepared by physical crosslinking (cyclic freezing/thawing) and gamma (${\gamma}$)-ray irradiation to evaluate the effect of NaCMC concentration (2~8 wt%) on the mechanical properties and the biocompatibility of the PVA/NaCMC hydrogels. The swelling rate of PVA/NaCMC hydrogels regardless of irradiation rose with increasing NaCMC content from 2 wt% to 8 wt%, while the gelation rate was the reverse. As the NaCMC content increased from 2 wt% to 6 wt%, the compressive strength of the hydrogels increased dramatically from $8.5{\pm}2.0kPa$ to $52.7{\pm}2.5kPa$ before irradiation and from $13.5{\pm}2.9kPa$ to $65.5{\pm}8.7kPa$ after irradiation. When 8 wt% NaCMC was added afterwards, the compressive strength decreased however. The irradiated PVA/NaCMC hydrogels containing 6 wt% NaCMC exhibited the tailored properties of the swelling rate of $118{\pm}3.7%$, the gelation rate of $71.4{\pm}1.3%$, the strength of $65.5{\pm}8.7kPa$, respectively, and no cytotoxicity was observed.

Substitution Characteristics of Carboxymethyl cellulose made from Hydrocellulose (수화(水化) 셀룰로오스로 제조(製造)한 카르복시메틸 세룰로오스의 치환(置換) 특성(特性))

  • Choi, Won-Sil;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.81-90
    • /
    • 1992
  • The effect of acid treatment of cellulose on the substitution charateristics of carboxymethylation was studied in this paper. Five samples of hydrocellulose(HC), all prepared from ${\alpha}$-cellulose by hydrolysis with five reaction times and determined on average molecular weight and polydispersity, were carboxymethylated to carboxymethyl cellulose (CMC). The CMCs from HCs were examined upon degree of substitution(DS), distribution of carboxymethyl groups in anhydroglucose units of the cellulose, and unsubstituted anhydroglucose(USAG) content. The DS of CMCs increased with increasing the hydrolysis time except CMC from HC at 1 hour hydrolysis time. In carboxymethylation the availability of hydroxyl groups on anhydroglucose units in HCs was the highest on OH(2), and the relative availability of OH(6) increased with the increasing of the hydrolysis time. The USAG contents were more deviated than that calculated based on Spurlin's model, and had a strong tendency of decreasing with increasing the hydrolysis time. The reactivity of HC was lower than that of ${\alpha}$-cellulose and the relative availability of OH(6) in HC increased with the hydrolysis time.

  • PDF

The Effect of Hyaluronate-Carboxymethyl Cellulose on Bone Graft Substitute Healing in a Rat Spinal Fusion Model

  • Lee, Jung-Hee;Jeong, Bi-O
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.5
    • /
    • pp.409-414
    • /
    • 2011
  • Objective : The aim of this study was to evaluate the impact of sodium hyaluronate-sodium carboxymethyl cellulose (HA-CMC), an anti-adhesive material for spinal surgery, on bone fusion by applying it to rat spinal models after lumbar posterolateral fusion. Methods : Lumbar posterolateral fusion was performed at L4-5 using bone graft substitutes in 30 rats. HA-CMC was injected in 15 rats at a dose of 0.2 cc (HA-CMC group) and a saline solution of 0.2 cc in the other 15 rats (control group). Simple radiographs were taken until postoperative 9 weeks with an interval of one week. At postoperative 4 and 9 weeks, three dimensional computed tomography (3D CT) scanning was performed to observe the process of bone fusion. At 9 weeks, bone fusion was confirmed by gross examination and manual palpation. Results : There were no statistically significant differences in bone fusion between the two groups. 3D CT scanning did not reveal significant differences between the groups. The gross examination and manual palpation after autopsy performed at 9 weeks confirmed bone union in 93.3% of both groups. Conclusion : The anti-adhesive material used for spinal surgery did not have adverse effects on spinal fusion in rats.