• Title/Summary/Keyword: Carboxylation efficiency

Search Result 26, Processing Time 0.022 seconds

Suitability of Physiological Indicators of Ozone Tolerance among 8 families of Sophora japonica (회화나무 8 가계간 오존 내성 차이에 대한 생리적 지표의 적합성)

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.3
    • /
    • pp.173-182
    • /
    • 2010
  • This study was conducted to investigate ozone sensitivity of physiological indicators and the difference in ozone tolerance of 8 families of Sophora japonica seedlings on the basis of the standardized physiological indicators. After ozone treatment, photosynthetic parameters, photosynthetic pigments and malondialdehyde (MDA) content, and antioxidative enzyme activities were analyzed from the leaves of S. japonica seedlings. Ozone tolerance indices among 8 families were calculated with the standardized physiological parameters. In addition, the reduction of carboxylation efficiency and apparent quantum yield were observed in the leaves of seven families, except for family No. 6 and 7, respectively. The apparent quantum yield varied from -27% to -61% of the control seedlings. Photosynthetic pigment content differed significantly among 8 families, but was not affected significantly by ozone treatment. Superoxide dismutase (SOD) activity increased from 7% to 64% after ozone exposure, and significant difference existed among 8 families. Ascorbate-peroxidase (APX) activity of 8 families increased by ozone treatment, and the activity of family No. 7 showed the highest increase (218%) in comparison to their respective control plants. On the basis of the standardized indices, family No. 6 showed the lowest tolerance by indicating higher reduction of both photosynthetic parameters and pigment content and lower increase of antioxidative enzyme activities. On the contrary, family No. 7 showed the highest tolerance as indicated by lower reduction of photosynthetic parameters, higher amounts of photosynthetic pigments, and higher enzyme activity.

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Growth and Physiological Characteristics of Containerized Seedlings of Sageretia thea at Different Fertilization Treatments (시비처리에 따른 상동나무 용기묘의 생장 및 생리특성)

  • Eo, Hyun Ji;Son, Yong Hwan;Park, Sung Hyuk;Park, Gwang Hun;Lee, Kyeong Cheol;Son, Ho Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.189-197
    • /
    • 2021
  • This study aims to optimize the appropriate concentration of fertilizers for Sageretia thea by analyzing growth performances (height and root collar diameter) and physiological characteristics (photosynthesis, chlorophyll contents, and chlorophyll fluorescence reaction). As fertilizer concentration was increased to 1.5 g·L-1, growth increased, but it decreased at 2.0 g·L-1 treatment. Root collar diameter growth was reduced because of higher fertilizer concentrations. Photosynthesis reactions showed the highest CO2 reaction curves, maximum photosynthesis rate, and maximum carboxylation rate in the 1.5 g·L-1 fertilizer treatment. The chlorophyll fluorescence reaction and SPAD values revealed that fertilizer treatment improves photosynthesis efficiency and robustness compared with untreated control. Therefore, the appropriate fertilizer concentration for producing good seedling quality of Sageretia thea is 1.0~1.5 g·L-1.

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage (광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발)

  • Jung, Dae Ho;Yoon, Hyo In;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.268-275
    • /
    • 2017
  • The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2 Concentration (온도와 CO2 농도 증가에 따른 다릅나무와 백당나무의 생장, 광합성 및 광색소 함량 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil-Nam;Lee, Jae-Cheon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.115-122
    • /
    • 2011
  • The impacts of elevated temperature and $CO_2$ were studied on the seedlings of Maackia amurensis and Viburnum opulus var. calvescens. The seedlings were grown in controlled-environment growth chambers with four combinations of temperature and $CO_2$ treatments: $25^{\circ}C$ + ambient $CO_2$ (400 ppm), $25^{\circ}C$ + elevated $CO_2$ (800 ppm), $30^{\circ}C$ + ambient $CO_2$ (400 ppm), and $30^{\circ}C$ + elevated $CO_2$ (800 ppm). Under elevated temperature and $CO_2$ concentration, the dry weight decreased in seedlings of M. amurensis, but increased in seedlings of V. opulus var. calvescens. In addition, the shoot to root (S/R) ratio in M. amurensis reduced but that of V. opulus var. calvescens increased under elevated $CO_2$ concentration. The S/R ratios of two tree species increased under higher temperature. M. amurensis represented lower carboxylation efficiency under higher temperature and $CO_2$ concentration and that of V. opulus var. calvescens showed lower values under the only higher temperature. Photosynthetic pigment content of in the leaves of M. amurensis was lower under higher $CO_2$ concentration and higher under the increase of temperature, but that of V. V. opulus var. calvescens decreased according to the increase of temperature. Chlorophyll a/b ratios of M. amurensis and V. V. opulus var. calvescens decreased obviously with the increase of $CO_2$ concentration and temperature, respectively. In conclusion, the growth and physiological responses under the environmental changes such as temperature and $CO_2$ concentration depend on the tree species. Therefore, more studies are needed to predict the response of each tree species against the climate changes.