• Title/Summary/Keyword: Carbonized carbon

Search Result 165, Processing Time 0.024 seconds

Adsorption properties of activated carbon prepared from pre-carbonized petroleum coke in the removal of organic pollutants from aqueous solution

  • Ahmed, S.A. Sayed;El-Enin, Reham M.M. Abo;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.152-161
    • /
    • 2011
  • Activated carbon was prepared from pre-carbonized petroleum coke. Textural properties were determined from studies of the adsorption of nitrogen at 77 K and the surface chemistry was obtained using the Fourier-transform infrared spectrometer technique and the Boehm titration process. The adsorption of three aromatic compounds, namely phenol (P), p-nitrophenol (PNP) and benzoic acid (BA) onto APC in aqueous solution was studied in a batch system with respect to contact time, pH, initial concentration of solutes and temperature. Active carbon APC obtained was found to possess a high surface area and a predominantly microporous structure; it also had an acidic surface character. The experimental data fitted the pseudo-second-order kinetic model well; also, the intraparticle diffusion was the only controlling process in determining the adsorption of the three pollutants investigated. The adsorption data fit well with the Langmuir and Freundlich models. The uptake of the three pollutants was found to be strongly dependent on the pH value and the temperature of the solution. Most of the experiments were conducted at pH 7; the $pH_{(PZC)}$ of the active carbon under study was 5.0; the surface of the active carbon was negatively charged. The thermodynamic parameters evaluated for APC revealed that the adsorption of P was spontaneous and exothermic in nature, while PNP and BA showed no-spontaneity of the adsorption process and that process was endothermic in nature.

Comparative Study on Adsorption Properties of Carbons Derived from Lignin and Polymer/Lignin Composite Precursors (리그닌 및 고분자/리그닌 복합소재 탄화 생성물의 흡착 특성 비교)

  • Young Soon Im;Ahyeon Jin;Sun Young Park;Mijung Kim;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.488-492
    • /
    • 2023
  • In this study, a carbon film derived from a polymer/lignin composite precursor was produced by a carbonization cycle with a controlled temperature profile. The feasibility of successful formation of the carbon film using the carbonization cycle was monitored. The adsorption behavior of the carbon film toward various molecules, such as nonpolar and polar organic molecules, and dyes was investigated using ultraviolet/visible (UV/Vis) spectroscopy compared with that of carbonized lignin. Cyclic voltammetry (CV) analysis proved that a robust carbon film was prepared by the carbonization cycle. It was also demonstrated that the carbonized lignin and carbon film showed adsorption capability toward all types of organic molecules, in particular organic dyes, owing to the carbonized lignin. This work provides important information for future relevant research.

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.

Recycling Technology of Sewage Sludge by Carbonization

  • Park, Sang-U;Jang, Cheol-Hyeon;Kim, Nak-Ju
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • This study has been conducted to develop a new recycling technology of sewage sludge using a carbonization process. The carbonizing yield, the calorific value and EC(electric conductivity) of carbonized sewage sludge had a tendency to be decreased with increase of the carbonizing temperature and time, but pH and the C/N were increased with increase the carbonizing temperature and time. The whole pore volume of carbonized sludge processed in the carbonizing furnace was /g, which was smaller than that in the electric furnace. But, the rates of mesopore and macropore were found to account for 100% therein. Rate of color and organic materials removal for dyeing wastewater were determined 70~97%, 78~83% on cotton yarn, 88~96%, 69~80% on wool wastewater and 77~89%, 77~87% on towel compared with powder activated carbon. Effect of carbonized sludge on chrysanthemum growth was investigated. Plant height and number of leaves was better mixture of carbonized sludge than comparison.

The Effect of Potassium Hydroxide on the Porosity of Phenol Resin-based Activated Carbon Fiber

  • Jin, Hang-Kyo
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2006
  • Activated carbon fiber could be prepared at 973 K by catalytic activation using potassium hydroxide. Phenol resin fiber (Kynol) was impregnated with potassium hydroxide ethanol solution, carbonized and activated at 973 K, resulting in activated carbon fibers with different porosities. The potassium hydroxide accelerated the activation of the fiber catalytically to form narrow micropore preferentially in carbon dioxide atmosphere. The narrow micropore volume of 0.3~0.4 cc/g, total pore volume of 0.3~0.8 cc/g, mean pore width of 0.5~0.7 nm was obtained in the range of 20~50% burnoff.

  • PDF

Mechanical and Thermal Properties of Needle Punched Nonwoven Carbon/Phenol Composite (니들펀칭 부직포 탄소/페놀 복합재료의 역학적 성질 및 열적 성질에 관한 연구)

  • 정경호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.50-53
    • /
    • 2000
  • The effect of punching density on the mechanical and thermal properties of nonwoven needle-punched carbon/phenol composite was studied. The carbonized preforms were farmed into composites with phenol resin. The interlaminar shear, tensile and flexural strengths were increased with increasing punching density. However, excessive punching density decreased interlaminar shear and tensile strengths. Erosion rate of carbon/phenol composite was decreased with increasing punching density

  • PDF

Effect of Graphite Powder Addition on the Mechanical Properties of Carbon/Carbon Composites (흑연분말의 첨가가 탄소/탄소 복합재료의 물성에 미치는 영향)

  • 신준혁;황성덕;강태진
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.72-80
    • /
    • 2000
  • Effect of graphite powder addition on the mechanical properties of carbon fiber reinforced carbon composites (C/C composites) was investigated. Greenbody (G/B) with 0~30wt.% graphite powder addition to phenol resin was prepared and carbonized at $1000^{\circ}C$ to make C/C composites. Flexural strengths of 20wt.% graphite powder additions showed maximum values in the both case of G/B and C/C composites. But, at the graphite addition over 20wt.%, there was negative effect due to the matrix inhomogeneity. Flexural strength of cured resin without graphite Powder was higher than that with graphite. However, flexural strength of carbonized resin with graphite increased three times as much as that of carbonized resin without graphite. Because the addition of graphite powder effects the restraint of shrinkage after carbonization and the deflection of crack path. In Mode II ENF test, energy release rates($G_{II}$) of G/B and C/C composites with the 20w1.% addition of graphite were both increased. But, the addition of graphite was more effective to the increase of $G_{II}$ in C/C composites than that in G/B.

  • PDF

CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs (다공성 물질을 이용한 CO2 포집 및 분리: 다공성 탄소와 유연한 MOF 비교 연구)

  • Jung, Minji;Park, Seoha;Oh, Hyunchul;Park, Kwi-il
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.417-422
    • /
    • 2018
  • The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.

The Carbonization Behaviors of Coal Tar Pitch for Mechanical Seal

  • Chae, Jae-Hong;Kim, Kyung-Ja;Cho, Kwang-Youn;Choi, Jae-Young
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.182-191
    • /
    • 2001
  • Quinoline insoluble formed by the heat treatment was hot-pressed near its softening point. The green body was stabilized in the temperature range of $300{\sim}400^{\circ}C$ and subsequently carbonized below $1300^{\circ}C$ in an argon atmosphere. The behaviors of QI formation was examined with varying the heat treatment temperature and the lapse of time of the sample carbonized at various temperatures. And the mechanical property, corrosion resistance, and friction behavior were also measured optimum content of mesophase pitch ensured a dense structure and high $LC_{(002)}$ value, which resulted in high mechanical properties, good corrosion resistance, and low-stable friction behavior.

  • PDF

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF