Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.7.417

CO2 Capture & Separation in Microporous Materials: A Comparison Between Porous Carbon and Flexible MOFs  

Jung, Minji (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Park, Seoha (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Park, Kwi-il (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.7, 2018 , pp. 417-422 More about this Journal
Abstract
The stereotype of flexible MOFs(Amino-MIL-53) and carbonized porous carbon prepared from renewable resources is successfully synthesized for $CO_2$ reduction application. The textural properties of these microporous materials are investigated, and their $CO_2$ storage capacity and separation performance are evaluated. Owing to the combined effects of $CO_2-Amino$ interaction and its flexibility, a $CO_2$ uptake of $2.5mmol\;g^{-1}$ is observed in Amino-MIL-53 at 20 bar 298 K. In contrast, $CH_4$ uptake in Amino-MIL-53 is very low up to 20 bar, implying potential sorbent for $CO_2/CH_4$ separation. Carbonized samples contain a small quantity of metal residues(K, Ca, Mg, S), resulting in naturally doped porous carbon. Due to the trace metal, even higher $CO_2$ uptake of $4.7mmol\;g^{-1}$ is also observed at 20 bar 298 K. Furthermore, the $CH_4$ storage capacity is $2.9mmol\;g^{-1}$ at 298 K and 20 bar. To evaluate the $CO_2$ separation performance, the selectivity based on ideal adsorption solution theory for $CO_2/CH_4$ binary mixtures on the presented porous materials is investigated.
Keywords
MIL-53-NH2(Al); $CO_2$ capture; $CO_2/CH_4$ separation; metal-organic frameworks(MOFs); carbonized porous carbon;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. S. Blankenship and R. Mokaya, Energy Environ. Sci., 10, 2552 (2017).   DOI
2 IEA, $CO_{2}$ Emissions from Fuel Combustion 2017, Retrieved May 30, 2018 from https://www.iea.org/publications/ freepublications/publication/CO2EmissionsfromFuel-CombustionHighlights2017.pdf
3 S. A. Rackley, "Carbon Capture and Storage", ed. S. A. Rackley, p. xi, Butterworth-Heinemann, Boston, USA (2010).
4 W. S. Ahn, J. Kim and H. Y. Kim, Korean Chem. Eng. Res., 51, 171 (2013).   DOI
5 S. Yan, M. Fang, W. Zhang, W. Zhong, Z. Luo and K. Cen, Energy Convers. Manage., 49, 3188 (2008).   DOI
6 H. J. Lee, J. D. Lee and Y. D. Kim, Korean J. Mater. Res., 18, 650 (2008)   DOI
7 J. C. Fisher, R. V. Siriwardane and R. W. Stevens, Ind. Eng. Chem. Res., 50, 13962 (2011).   DOI
8 J. Park, N. F. Attia, M. Jung, M. E. Lee, K. Lee, J. Chung and H. Oh, Energy, 158, 9 (2018).   DOI
9 S. Hug, L. Stegbauer, H. Oh, M. Hirscher and B. V. Lotsch, Chem. Mater., 27, 8001 (2015).   DOI
10 W. R. Lee and C. S. Hong, NICE (News & Information for Chemical Engineers), 31, 466 (2013).
11 M. Mihaylov, K. Chakarova, S. Andonova, N. Drenchev, E. Ivanova, A. Sabetghadam, B. Seoane, J. Gascon, F. Kapteijn and K. Hadjiivanov, J. Phys. Chem. C, 120, 23584 (2016).   DOI