• Title/Summary/Keyword: Carbonization Characteristics

Search Result 164, Processing Time 0.035 seconds

A Study on the Characteristics of the Biochar by Hydrothermal Carbonization with Food Waste (열수가압탄화법(HTC, Hydrothermal Carbonization)에 의한 음식물 폐기물 biochar의 특성 연구)

  • Cho, Woo Ri;Oh, Minah;Chung, Wonduck;Park, Seong-Kyu;Bae, Sunyoung;Lee, Jai-young
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • Hydrothermal carbonization (HTC) is a carbonization method of thermochemical process at a relatively low temperature (180-250℃). It is reacted by water containing raw material. In this study, it was selected for effective disposal method of food waste because food waste in Korea has large amount water. 5 kg, 10 kg, 15 kg of food waste were reacted for 6 hours at 200℃ for selecting the optimum amount of raw material. Since the derived optimum amount, food waste was reacted for 2 hours, 4 hours and 6 hours at 200℃ and 1.5 MPa. After carbonization, it was analyzed to evaluated the properties by ultimate analysis, iodine adsorption, BET surface area and SEM. After analyzing the characteristics, it can be utilized as a basic data for applied.

Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser (알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향)

  • Kim, Jae Kun;Yu, Hyung Jin;Hong, Yoong He;Park, Mi Jin;Park, Seung Youl
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.539-546
    • /
    • 2006
  • A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

Kinetics on the Microwave Carbonization of Rice Chaff (왕겨의 마이크로파 탄화속도)

  • Kim, Ji Hyun;Ryu, Seung Kon;Kim, Dong Kook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.683-690
    • /
    • 2005
  • The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at $300-600^{\circ}C$ for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it's C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.

Evaluation on Reaction Kinetics of Cow Manure in Carbonization Process (탄화공정에서의 우분 반응속도 평가)

  • Kim, Jae-Kyung;Lee, Min-Seok;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.40-46
    • /
    • 2014
  • Through the study of the basic characteristics of cow manure and the characteristics of carbonization residue, carbonization degree, conversion rate, kinetic reactions, and activation energy for cow manure were examined. Since the heating value of cow manure was very low, it was converted to carbonization residue as a fuel with heating value of 4,300 kcal/kg by carbonization processes. Conversion rate was increased rapidly up to 10 minutes of the initial reaction stage and was increased with increasing temperature. The carbonization of cow manure could be described by the 1st order reaction. Frequency factor(A) of reaction rate for cow manure was evaluated to be $1.34{\times}10^{-2}min^{-1}$, the activation energy was estimated to be 5,196.4 cal/mol. As carbonization temperature increased from $250^{\circ}C$ to $400^{\circ}C$, the kinetic reaction was increased from $0.2107min^{-1}$ to $0.0679min^{-1}$. From the result of the carbonization for cow manure, it can be determined that the optimal conditions of the carbonization process were 20 minutes in carbonization time and $350^{\circ}C$ for carbonization temperature.

An Energy Characteristics of Carbonization Residue produced from Sewage Sludge Cake (하수슬러지 케익으로부터 생산한 탄화물의 에너지 특성)

  • Rhee, Seung-Whee
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • Sewage sludge cake(SSC) is seriously concerned because ocean dumping, which is the cheapest treatment method now, will be banned in 2012. On the basis of this reason, recycling of SSC is emphasized to convert the treatment method. One of the method to recycling SSC could be carbonization process which also can be reduced greenhouse gas effectively. And carbonization residue of SSC produced by carbonization process can become a renewable energy source. However, carbonization process has not been evaluated by considering basic operating data such as heating value, yield and fuel ratio. In this study, the basic characteristics of SSC such as proximate analysis, elementary analysis and heating value are analyzed. In carbonization process, the effect of carbonization temperature and time on the residue of SSC are estimated. And the analysis is carried out to obtain basic properties of the residue of SSC. From the result of chemical composition of SSC residue, there is 27% of phosphate in SSC. Phosphate will take a role of reductant to convert from hazardous substance to non-hazardous material. As increased carbonization temperature and time, heating value and yield are decreased but fuel ratio(fixed carbon/volatile combustible) of the residue is increased. In the carbonization process, the optimum temperature and time in carbonization test for SSC can be decided by $250^{\circ}C$ and 15 min, respectively. However, the carbonization residue of SSC can not be deserved to use one of renewable energy sources because the heating value at the optimum condition is relatively low. Hence, it is desirable that SSC can be mixed with other organic waste to carbonize.

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy (열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

A Study on the Characteristics of Organic Insulating Materials Carbonized by a Leakage Current (누설전류에 의하여 탄화된 유기절연재료의 특성에 대한연구)

  • Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • Organic insulating materials which are utilized as insulating materials for the low voltage show unique carbonization characteristics when they are carbonized by a leakage current. Therefore the use of the carbonization characteristics makes it possible to examine the electrical fire which is caused by a leakage current flowing on the surface of the organic insulating material. In order to understand such carbonization characteristics, in this paper, experiments have been done to carbonize typical organic insulating materials such as phenol resin, PVC, and acrylic resin, and the carbonization patterns and the IR absorption spectrum of specimens have been analyzed. According to the analysis of the carbonization patterns, the phenol resin shows the so-called 'spider-leg' carbonization pattern due to a thermosetting property. In contrast to the phenol resin, the thermoplastic property makes it difficult to observe a clear carbonization pattern to verify carbonizing causes on the surfaces of PVC and acrylic resins. In this case, the IR absorption spectrum can be analyzed to examine the specimen carbonized by a leakage current. The analysis result shows that absorption peaks appear at the wave numbers of $3,400[cm^{-1}]$ and $1,618[cm^{-1}]$, which can be an important factor to verify the carbonizing causes.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

Evaluation on Adequate Range of Carbonization Temperature using Swine Manure through Reaction Kinetics (반응속도 분석을 통한 돈분의 탄화 온도 적정범위 평가)

  • Choi, Hyeong-Jin;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.25-32
    • /
    • 2017
  • Since the heating values of swine manures were very low at 859~1,075 kcal/kg, it was necessary to convert to carbonization residue by carbonization processes among thermal processes. The most important factor in the carbonization process of swine manure is the carbonization temperature, and it was evaluated the optimal range of carbonization temperature for swine manure in this study by the thermal characteristics and the reaction kinetics. The carbonization of swine manure could be described by the 1st order reaction and Arrhenius equation. The frequency factor (lnA) and the activation energy were estimated to be 3.05~13.08 and 6.94~18.05 kcal/mol, respectively. The range of optimal carbonization temperature range of swine manure was $260{\sim}300^{\circ}C$.