• Title/Summary/Keyword: Carbon-fluorine

Search Result 107, Processing Time 0.021 seconds

Study on enhanced electron emission current of carbon nanotube by thermal and HF treatments (열 및 불산 처리를 통한 탄소나노튜브의 전자 방출 특성의 향상 연구)

  • Kim, K.S.;Ryu, J.H.;Lee, C.S.;Lim, H.E.;Ahn, J.S.;Jang, J.;Park, K.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • We studied the effect of thermal annealing and hydrofluoric (HF) acid treatment on the field emission properties of carbon nanotube field emitter arrays (CNT-FEAs) grown with the resist-assisted patterning (RAP) process. After thermal and HF treatment, it was observed that the electron emission properties were remarkably improved. The enhanced electron emission was also found to depend strongly on the sequence of the treatments; the electronemission current density is 656 $mA/cm^2$ with the process of thermal treatment prior to HF treatment while the current density is reduced by 426 $mA/cm^2$ with the reversal processes. This is due to the increased crystalline structure by thermal annealing and then strong fluorine bond was formed by HF treatment.

Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination (플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성)

  • Lee, Raneun;Lim, Chaehun;Kim, Min-Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Fluorination was carried out to improve the adsorption performance of pitch-based activated carbon fibers (ACFs) onto acetic acid. Both plasma and direct gas fluorination were used for fluorination, and the acetic acid gas adsorption performance of fluorinated ACFs was investigated. X-ray photoelectron spectroscopy (XPS) is analyzed to determine the surface characteristics of ACFs, and the pore characteristics were analyzed by 77 K nitrogen adsorption. An adsorption performance was measured through gas chromatography, and it was confirmed that the breakthrough time of plasma fluorinated sample was 790 min and that the breakthrough time was delayed compared to that of using untreated one of 650 min. However, the breakthrough time of direct gas fluorinated sample was 390 min, indicating that the adsorption performance was inhibited. The plasma fluorinated ACFs showed an increase in the adsorption performance due to an electrostatic attraction between the acetic acid gas (CH3COOH) with the fluorine group introduced to the surface without changing its specific surface area. On the other hand, the specific surface area of the direct gas fluorinated ACFs decreased significantly up to 55%, and the physical adsorption effect on the acetic acid gas also reduced.

Phosphogypsum purification for plaster production: A process optimization using full factorial design

  • Moalla, Raida;Gargouri, Manel;Khmiri, Foued;Kamoun, Lotfi;Zairi, Moncef
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.36-45
    • /
    • 2018
  • The phosphogypsum (PG) is a byproduct of the phosphate fertilizers manufacture. The world production estimated to 200 million tons per year induces environmental threats and storage problems, which requires strict policies to limit pollution and encourage its valorization. This paper presents a purification process of the crude PG including treatment with a diluted sulfuric acid, floatation, filtration and washing. The purified PG is used to produce plaster. The process optimization was conducted using a full factorial design. The significant factors considered in the experimental study are temperature ($X_1$), volume of sulfuric acid solution ($X_2$) and PG quantity ($X_3$). The main effects and interaction effects of these factors on the responses of the % $P_2O_5$, % F, Total Organic Carbon (TOC) ($mg{\cdot}kg^{-1}$) and pH were analyzed. The optimum conditions for $X_1$, $X_2$ and $X_3$ were found to be $60^{\circ}C$, 3 L and 1 kg, respectively and the optimized pH values was found to be 6.2. Under these conditions, 60% of $P_2O_5$, 95% of Fluorine and 98% of TOC were removed from PG. The predicted values were found approximately the same as the experimental ones. The plaster produced with purified PG was found to have similar properties to that produced from natural gypsum.

Studies on the Gas Permeation Behaviors Using the Surface Fluorinated Poly(phenylene oxide) Membranes (표면불소화에 따른 Poly(phenylene oxide)막의 기체투과거동 연구)

  • Lee, Bo-Sung;Kim, Dae-Hoon;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This study deals with the surface fluorination of poly(phenylene oxide) (PPO) with the direct contact of 100 ppm fluorine gas. To characterize the surface fluorinated membranes, the contac angle measurement, X-ray photoelectron microscopy analysis and the gas permeation experiments were performed. As the fluorination time increases, the hydrophobicity of membrane surfaces is increased by the surface characterization. In general, as expected, the overall gas permeability was reduced. Typically, the permeability reduction of 33% for nitrogen, 23% for oxygen and 3% for carbon dioxide were observed when the membranes were exposed in 100 ppm environment for 60 min., meanwhile the selectivity was increased from 3.92 to 4.47 for $O_2/N_2$ and 18.09 to 25.4 for $O_2/N_2$, respectively.

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

Effect of length of alkyl chain consisting of fluorine and carbon in self-assembled monolayers

  • Park, Sang-Geon;Lee, Won Jae;Lee, Won Jae;Kim, Tae Wan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2018
  • We investigated the interfacial properties of fluorocarbon self-assembled monolayers (FC-SAMs) with different alkyl chain lengths. It was found that the substrate characteristics were changed rapidly with the fabrication time and temperature of the SAM. FC-3SAM, which has the shortest alkyl chain in this study, showed a contact angle of $54.1^{\circ}$ when it was fabricated in an electric oven at $60^{\circ}C$ for the first minute. The FC-3SAM showed a contact angle of up to $76.9^{\circ}$ when it was fabricated in an electric oven at the same temperature condition for 180 minutes. FC-10SAM, which has the longest alkyl chain in this study, showed a contact angle of $64.7^{\circ}$ when it was fabricated at a temperature condition of $60^{\circ}C$ for 1 minute, and a contact angle of $98.7^{\circ}C$ at a temperature condition of $60^{\circ}C$ for 180 minutes. It was found that the FC-10SAM shows an increased contact angle and hydrophobic properties due to a well-aligned molecular structure resulting from a strong van der Waals force. In contrast, the FC-3SAM shows a small contact angle due to the intermolecular disorder resulting from a weak van der Waals force. The average roughness of FC-SAMs was investigated using AFM. The surface roughness of FC-SAMs, which verifies the results of contact angle, was confirmed. At a fabrication time of 120 minutes, the FC-10SAM showed an improvement in average roughness by 62% compared to that of FC-3SAM due to its good alignment.

Identification of the mechanism for dehalorespiration of monofluoroacetate in the phylum Synergistota

  • Lex E. X. Leong;Stuart E. Denman;Seungha Kang;Stanislas Mondot;Philip Hugenholtz;Chris S. McSweeney
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.396-403
    • /
    • 2024
  • Objective: Monofluoroacetate (MFA) is a potent toxin that blocks ATP production via the Krebs cycle and causes acute toxicity in ruminants consuming MFA-containing plants. The rumen bacterium, Cloacibacillus porcorum strain MFA1 belongs to the phylum Synergistota and can produce fluoride and acetate from MFA as the end-products of dehalorespiration. The aim of this study was to identify the genomic basis for the metabolism of MFA by this bacterium. Methods: A draft genome sequence for C. porcorum strain MFA1 was assembled and quantitative transcriptomic analysis was performed thus highlighting a candidate operon encoding four proteins that are responsible for the carbon-fluorine bond cleavage. Comparative genome analysis of this operon was undertaken with three other species of closely related Synergistota bacteria. Results: Two of the genes in this operon are related to the substrate-binding components of the glycine reductase protein B (GrdB) complex. Glycine shares a similar structure to MFA suggesting a role for these proteins in binding MFA. The remaining two genes in the operon, an antiporter family protein and an oxidoreductase belonging to the radical S-adenosyl methionine superfamily, are hypothesised to transport and activate the GrdB-like protein respectively. Similar operons were identified in a small number of other Synergistota bacteria including type strains of Cloacibacillus porcorum, C. evryensis, and Pyramidobacter piscolens, suggesting lateral transfer of the operon as these genera belong to separate families. We confirmed that all three species can degrade MFA, however, substrate degradation in P. piscolens was notably reduced compared to Cloacibacillus isolates possibly reflecting the loss of the oxidoreductase and antiporter in the P. piscolens operon. Conclusion: Identification of this unusual anaerobic fluoroacetate metabolism extends the known substrates for dehalorespiration and indicates the potential for substrate plasticity in amino acid-reducing enzymes to include xenobiotics.

Structure-Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor

  • Shujie Wang;Xinru Tian;Suresh Paudel;Sungho Ghil;Choon-Gon Jang;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.442-450
    • /
    • 2024
  • The type-1 cannabinoid receptor (CB1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure-activity relationships (SARs) for CB1R ligands. In this study, CB1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB1R, which can be used to control psychiatric disorders and drug abuse.

Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing (외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향)

  • Hyunwoo Cho;Youngwoo Kim;Yongbum Kwon;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

The Characteristics of Mesophase Pitch Prepared by Heterogeneous Fluorination Process from Pyrolysis Fuel Oil (열분해잔사유로부터 불균일계 불소화공정에 의해 제조된 메조페이스 피치의 특성)

  • Kim, Do Young;Kim, Ji-Hyun;Lee, Hyung-Ik;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.537-542
    • /
    • 2016
  • In this study, we have prepared mesophase pitch from pyrolysis fuel oil (PFO) by heterogeneous reforming process. This process was conducted by direct fluorination at various temperature and followed by the heat treatment at $390^{\circ}C$. The reformed pitch was then investigated by softening point analysis, elemental analysis, fourier-transform infrared spectroscopy, high resolution X-ray diffraction and polarization microscope analysis. Carbon contents of reformed pitch increased according to increasing the reaction temperature of fluorination, while oxygen, nitrogen and sulfur contents were completely eliminated. As the fluorination temperature increased, the creation, growth, coalescence and alignment process of mesophase spheres were observed. Also the interlayer spacing of carbon hexagonal planar structure decreased, while its crystalline size increased. In addition, aromatic ring compound contents increased by the condensation polymerization of aliphatic compound. These results can be attributed to the radical reactivity of the fluorine increased as the reaction temperature increased. It was considered that the fluorination reaction could help PFO to generate aromatic compounds, via promoting polymerization by radical reaction.