• Title/Summary/Keyword: Carbon-fiber sheet

Search Result 274, Processing Time 0.01 seconds

A Study on Mechanical Characteristics of Reinforced Concrete Columns Confined with Carbon Fiber Sheet (CFS로 횡보강된 철근콘크리트 기둥의 역학적 특성에 관한 연구)

  • 권영웅;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.743-749
    • /
    • 1999
  • Recently new rehabilitation techniques have been proposed with advanced composite materials like carbon fiber, aramid, glass fiber sheet and so forth. The purpose of this paper is to investigate the mechanical characteristics of reinforced concrete columns confined with carbon fiber sheet and evaluate the degree of their strengthening effect. For the test, the specimen size of column is 15cm$\times$15cm$\times$90cm reinforced with 4 number of main bars of 10 mm diameter, tied bars of 6 mm diameter and slenderness ratio 20. Columns were wrapped with carbon fiber sheet along the column length. It is necessary to make some assumption regarding the confinement of carbon fiber sheet to apply to reinforced concrete columns under concentric loads. The strength gain effect of columns confined with carbon fiber sheet could be predicted using the proposed equation.

  • PDF

Mechanical properties of carbon fiber sheet and carbon fiber strand sheet based on carbon fibers for the reinforcement of highway bridge RC slabs (도로교 RC 상판 보강을 위한 탄소섬유 기초 carbon fiber sheet와 carbon fiber strand sheet의 역학특성)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.290-293
    • /
    • 2015
  • Recently, a lot of interest has been shown in structural maintenance managements of civil infrastructures. Many researchers have been conducted on various maintenance techniques and repair materials. Among other fiber materials the carbon fiber materials are especially focused on maintenance management of Highway Bridges. Extensive work has been done on Carbon Fiber Sheet (CFS). Nevertheless, Carbon Fiber Strand Sheet (CFSS) is a newly developed material, on which limited work has been done until now. Therefore, in this study bonding the CFSS to RC slab specimen and fatigue resistance evaluation has been conducted. The results demonstrated an increase of 25.3 times more reinforcement of RC slab compared to non-reinforced RC slab. Moreover, compared to CFS-bonded RC slab, The CFSS-bonded RC slab showed 1.2 times greater reinforcement.

Study on the mechanical Properties of Carbon Fiber Sheet (탄소섬유쉬트의 재료 역학적 특성에 관한 연구)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.803-808
    • /
    • 1998
  • As carbon fiber is a light-weight materials, high tensile strength and durability compared with rebar, the retrofitting method for RC structures using carbon fiber sheet (CFS) must be use widely. In this paper, the tensile strength test for carbon fiber sheet variable of CF's weight and elastic modulus to evaluate the design tensile strength of carbon fiber sheet which is needed for the strengthening design of CFS and the calculation of strengthening effect. As a result, the design tensile strength of CFS can be calculate using the effect coefficient of strengthening(α) of CFS, the average tensile strength of CFS and the standard deviation of CFS(equation 5)

  • PDF

FE Analysis of RC Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 RC 보의 유한요소해석)

  • 한상호;이경동
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2003
  • Carbon fiber sheet has been used to rehabilitate many types of reinforced concrete members with its superior characteristics such as their lightweight, high strength, corrosion resistance, and easy execution. But the failure behavior of reinforced concrete members show a high variation by the bond characteristics between carbon fiber sheet and concrete surface. In this study, a bond stress-slip model, which accounts for changes in bonding behavior between concrete and carbon fiber sheet with some link elements, is proposed. The link elements are used to represent the concrete-carbon fiber sheet interface. To investigate the efficiency of this method, the analytical solutions for the behavior of reinforced concrete beam strengthened with carbon fiber sheet are compared with experimental ones. Results from the proposed model comparatively well agree with the experimental results.

The Performance and Application of Carbon Fiber Sheet for the Repair and Reinforcement Material (보수.보강재로서의 탄소섬유시트 보강섬유의 활용기술)

  • Kwon, Young-Jin;Jang, Tea-Min;Kim, Chul-Ho;Park, Deuk-Kon;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.418-421
    • /
    • 1996
  • Carbon Fiber Sheet is very attractive for the upgrading damaged reinforced concrete due to its good tensile strength, handabilbity and resistance to corrosion. This paper discusses the applicability of continous carbon fiber sheet for a reinforcement of existeing reinforced concrete structure located in Pusan. Examples of site data and actual concrete rehabilitation project at slab structure related to construction method used carbon fiber sheet will be given.

  • PDF

The Manufacturing of Electromagnetic Shielding Sheet Using the Carbon and Wood Fiber Mixture (탄소와 목재섬유 혼합물을 이용한 전자기파 차폐용 시트의 제조)

  • Kim, Hyoung-Jin;Um, Gi-Jeung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.68-75
    • /
    • 2006
  • Electromagnetic shielding sheet using the carbon and wood fiber mixture was manufactured in an effort to develop an electromagnetic shielding packaging material. Carbon fibers were cut into 5, 10, and 15 mm using the automatic cutting device and blown and dispersed using compression air passed through the fine nozzle. Then carbon fibers were slurried with water (0.1% consistency), and softwood kraft pulp along with cone starch were added. The wet mats were manufactured by dewatering in modified hand-sheet machine. The wet mats were pressed upto $4kgf/cm^2$ in the carbon and wood fiber mixture mat press. The wet mats were dried in the automatic controlled plate dryer. Investigation on the formation and surface structure of the newly developed carbon and wood fiber mixture electromagnetic shielding sheet were carried out using the scanning electron microscopy and the image analyzer. Finally electromagnetic shielding characteristics of the newly developed carbon and wood mixture sheet were measured using net-work analyser. The result was promising in the light of the fact that this method could open a new way to substitute the expensive imported electromagnetic shielding sheet.

Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement (유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향)

  • Kwon, Jieun;Kwon, Sunmin;Chae, Seehyeon;Jeong, Yedam;Kim, Jongwon
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

Evaluation of Flexural Performance of Reinforced Concrete Beams Strengthened by Carbon Fiber Sheet Considering End Anchorage Effect (탄소섬유시트로 보강한 RC보의 단부 정착유무에 따른 휨성능 평가)

  • Lee, Chang-Hyun;Eo, Seok-Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1165-1171
    • /
    • 2022
  • In this paper, the results of an experimental study were presented by measuring and comparing the flexural strength and deformation on the carbon fiber sheet strength reinforced concrete beam considering end anchorage effect. For this purpose, total six specimens of 100×100×600mm size were prepared and tested according to the KDS 14 20 20. The specimens were categorized in three cases as reference beams without strengthening, beams carbon fiber strengthened but not anchored and beams carbon fiber strengthened also anchored. Experimental results showed that the end anchorage contributed to increase the flexural strength about 42% greater than that of carbon fiber sheets alone, and the number and width of cracks were relatively increased. The results support a considerable effects of end anchorage for carbon fiber strengthened reinforced concrete beams in enhancing the flexural performance. Further studies are needed in durability and long term behavior of carbon fiber sheet strengthened reinforced concrete beams.

Self-diagnosis property of strengthened concrete by rib of hybrid FRP and carbon fiber sheet (하이브리드FRP 탄소계 리브 및 탄소섬유시트 보강 콘크리트의 자가진단 기능 검토)

  • Park, Seok-Kyun;Kim, Dae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.358-361
    • /
    • 2006
  • For giving self-diagnosing capability, a method based on monitoring the changes in the electrical resistance of carbon materials in strengthened concrete has been tested. Then after examining change in the value of electrical resistance of carbon materials used as a rib of CFGFRP or a sheet of carbon fiber before and after the occurrence of cracks and fracture in hybrid FRP or carbon fiber sheet strengthened concrete at each flexural weight-stage, the correlations of each factors were analyzed.

  • PDF

Confining Effect of CFS on Concrete Compressive Members under Load Actions (하중이력에 따른 콘크리트 압축부재의 CFS 보강효과에 관한 연구)

  • 배주성;김경수;김재욱;고영표
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.705-708
    • /
    • 1999
  • Advanced composite materials such as carbon fiber, aramid, and glass fiber sheet, are widely used recently to strengthening existing reinforced concrete structures. The purpose of this paper was to investigate the mechanical characteristics of concrete compressive members confined with carbon fiber sheet and evaluate the efficiency of the strengthening under load actions. Uniaxal compression tests of concrete compressive members confined with carbon fiber sheet were experimentally used to develop a relationship between the axial stresses and the lateral stresses. The resulting axial and lateral strains were used to determine the confinement effect of concrete compressive members.

  • PDF