• Title/Summary/Keyword: Carbon-fiber

Search Result 2,801, Processing Time 0.03 seconds

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Comparison of Physico-chemical and Nutritional Characteristics of Pre-inoculation and Post-harvest Flammulina velutipes Media (팽이버섯 접종전과 수확후 배지의 이화학성 및 영양성분 비교)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Suh, Jang-Sun;Moon, Yea-Hwang
    • Journal of Mushroom
    • /
    • v.10 no.4
    • /
    • pp.174-178
    • /
    • 2012
  • This study were carried out to analyze nutritional ingredients of pre-inoculation and post-harvest Flammulina velutipes media. pH, moisture content, total carbon(T-C), total nitrogen(T-N), crude protein, crude fiber, and crude fat content on the 8 raw materials using Flammulina velutipes bottle cultivation medium, and after sterilization(pre-inoculation) and post-harvest medium was analyzed. This result is expected to be utilized as the basis for recycling post-harvest media.

The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures (적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성)

  • Cho, Young-Jea;Kim, Young-Nam;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.

Structural Design and Analysis for High Altitude Long Endurance UAV (고고도 장기체공 무인기 구조 설계 및 해석)

  • Kim, Sung Joon;Lee, Seunggyu;Kim, Sung Chan;Kim, Tae-Uk;Kim, Seungho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.3
    • /
    • pp.68-73
    • /
    • 2014
  • Research is being carried out at Korea Aerospace Research Institute with aim of design a HALE UAV(High Altitude Long Endurance Unmanned Air Vehicle). HALE UAVs are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific area of interest. Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. High modulus CFRP(Carbon Fiber Reinforced Polymer) has been used in designing the structure in order to minimize the airframe weight. With respect to structural design and analysis, the key question is to decide an adequate airworthiness certification base to define suitable load cases for sizing of various structural components. In this study, FAR(Federal Aviation Regulation) 23 have constituted the guidance and benchmark throughout all structural studies. And the MSC/FlightLoads was introduced to analyze the flight loads for the HALE UAV. The MSC/FlightLoads can compute the flexible air load and analyzed loads are distributed on structural model directly. A preliminary structural concept was defined in accordance with the estimated inertial and aerodynamic loads. A FEM analysis was carried out using the MSC/Nastran code to predict the static and dynamic behaviour of UAV structure.

An Experimental Study on Shear Strengthening Effect of I-girder using Externally Bonded CFRP Strips (외부 부착 탄소섬유를 사용한 I형 보의 전단 보강 효과 연구)

  • Kim, Changhyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.108-113
    • /
    • 2018
  • Researches on strengthening and rehabilitation methods are being widely conducted due to the deterioration of existing concrete structures. Use of externally bonded Carbon Fiber Reinforced Polymers (CFRP) strips for the rehabilitation is a cost-effective and time-saving method. Generally, the CFRP layout for the shear strengthening was a uni-directional layout. Many researches have focused on the variables of the uni-directional CFRP layout such as the amount of material, angle, and spacing. Pilot tests indicated that the effective confinement of the concrete member can be provided with the bi-directional CFRP layout than the uni-directional layout. Therefore, the test was carried out after the uni- and bi-directional strengthening work using the same amount of CFRP material. CFRP anchors were installed to prevent unexpected premature CFRP delamination failure before reaching CFRP fracture strain. The effectiveness of the CFRP anchor and bi-directional CFRP layout for shear strengthening was verified based on the principal tensile strain contours.

Nutrient Digestibility and Greenhouse Gas Emission in Castrated Goats (Capra hircus) Fed Various Roughage Sources (조사료원 종류가 거세 염소(Capra hircus)의 영양소 소화율 및 온실가스 발생량에 미치는 영향)

  • Na, Youngjun;Hwang, Seokjin;Choi, Yongjun;Park, Geetae;Lee, Sangrak
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • The objective of this study was to determine the effect of various roughage sources on nutrient digestibility and enteric methane ($CH_4$), and carbon dioxide ($CO_2$) production in goats. Four castrated black goats ($48.5{\pm}0.6kg$) were individually housed in environmentally controlled respiration-metabolism chambers. The experiment design was a $4{\times}4$ balanced Latin square design with 4 roughage types and 4 periods. Alfalfa, tall fescue, rice straw, and corn silage was used as representative of legume, grass, straw, and silage, respectively. Dry matter digestibility was higher (p < 0.001) in corn silage than in alfalfa hay. Dry matter digestibility of alfalfa hay was higher than those of tall fescue or rice straw (p < 0.001). Neutral detergent fiber digestibility of tall fescue was lower (p < 0.001) than those of alfalfa, rice straw, or corn silage. Daily enteric $CH_4$ production and the daily enteric $CH_4$ production per kilogram of $BW^{0.75}$, dry matter intake (DMI), organic matter intake (OMI), digested DMI, and digested OMI of rice straw did not differ from those of tall fescue but were higher (p < 0.001) than those of alfalfa or corn silage. Roughage type had no effect on enteric $CO_2$ emission in goats. Straw appeared to generate more enteric $CH_4$ production than legume or silage, but similar to grass.

A Numerical Study on Resistance Performance According to the Draft CFRP Composite Canoe (탄소섬유를 적용한 카누의 흘수에 따른 저항성능에 대한 수치적 연구)

  • Kim, Ju Yeol;Kim, Junho;Joung, Jae Ha;Lim, Jongkil;Ra, Inkang;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.876-883
    • /
    • 2016
  • In this study, we selected CFRP to construct a canoe hull. A ship design was made using a commercial ship design program, SOLIDWORKS, and a flow analysis of the canoe on a free surface was calculated using STAR-CCM+. A flow field and waveform were obtained in this way. These results were used to check the resistant performance of the canoe. Results showed that if the draft is 0.09 m, it is safe to run at less than 4 m/s, and if draft is 0.24 m, it is safe to run at less than 2 m/s. Moreover, it was confirmed that those speeds can be made by two adults. The developed canoe, which is 20 % lighter in comparison with conventional FRP models, was briefly introduced in this paper.

Acrylic Acid-Grafted Hydrophilic Electrospun Nanofibrous Poly(L-lactic acid) Scaffold

  • Park, Kwi-Deok;Jung, Hyun-Jung;Kim, Jae-Jin;Ahn, Kwang-Duk;Han, Dong-Keun;Ju, Young-Min
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.552-558
    • /
    • 2006
  • Biodegradable nanofibrous poly(L-lactic acid) (PLLA) scaffold was prepared by an electrospinning process for use in tissue regeneration. The nanofiber scaffold was treated with oxygen plasma and then simultaneously in situ grafted with hydrophilic acrylic acid (AA) to obtain PLLA-g-PAA. The fiber diameter, pore size, and porosity of the electrospun nanofibrous PLLA scaffold were estimated as $250\sim750nm,\;\sim30{\mu}m$, and 95%, respectively. The ultimate tensile strength was 1.7 MPa and the percent elongation at break was 120%. Although the physical and mechanical properties of the PLLA-g-PAA scaffold were comparable to those of the PLLA control, a significantly lower contact angle and significantly higher ratio of oxygen to carbon were notable on the PLLA-g-PAA surface. After the fibroblasts were cultured for up to 6 days, cell adhesion and proliferation were much improved on the nanofibrous PLLA-g-PAA scaffold than on either PLLA film or unmodified nanofibrous PLLA scaffold. The present work demonstrated that the applications of plasma treatment and hydrophilic AA grafting were effective to modify the surface of electrospun nanofibrous polymer scaffolds and that the altered surface characteristics significantly improved cell adhesion and proliferation.

A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors (복합환경인자에 의한 FRP 보강근의 성능저하 특성)

  • Oh, Hong Seob;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • In spite of high resistant to corrosion and its strength, over the last two decades, concerns still remain about the durability of FRP materials under severe environmental and thermal exposures. In this paper, authors experimentally examine the combined degradation by thermal and chemical attacks in heterogeneous FRP rebar be made up with various fibers and resins. Five types of Carbon, Glass and Hybrid FRP rebars had manufactured by different process and surface patterns are adopted for the experiments such as weight change, interlaminar shear strength, SEM and FT-IR analysis. FRP specimens were immersed in alkaline or distilled solution up to 150 days and then thermal exposed on 60, 100, 150 and $300^{\circ}C$ for 30 minutes. From the test results, the degradation of FRP bars are influnced by the resin type and manufacturing process as well as the fiber, and ILSS of exposed FRP bar in solutions is slightly increased in initial stage and then decresed with the passing of immersed time. But, in this test, it is observed that the discrepancy of ILSS between degraded by alkaline solution and distilled water is negligible value.