• Title/Summary/Keyword: Carbon-coated

Search Result 830, Processing Time 0.025 seconds

Properties of SBR Compound using Silica-graphite Dual Phase Filler (실리카-그라파이트 이원 충진제를 이용한 SBR 컴파운드의 성질)

  • Shin, Ji Hang;Shanmugharaj, A.M.;Lee, Pyoung Chan;Jeoung, Sun Kyung;Ryu, Sung Hun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.66-72
    • /
    • 2014
  • Carbon coating on silica particles is done by grafting expanded graphite on the silica aggregates. Successful coating of carbon is corroborated using FT-IR, TGA, XPS and TEM. Crystalline nature of coated graphite is corroborated using XRD. Influence of carbon coated silica particles on rheometric and mechanical properties of SBR composites are investigated. Carbon coated silica particles showed significant improvement in rheometric and mechanical properties, when compared to pristine silica filled system corroborating higher polymer-filler adhesion. This fact was further supported by bound rubber content and equilibrium swelling ratios of unvulcanized and vulcanized SBR composites.

A Study on the Removal of $NO_3-N$ from Groundwater by $FeCl_3$-Coated Activated Carbon (염화철코팅 활성탄을 이용한 지하수 중의 질산성질소 제거를 위한 연구)

  • Cheong Kyung-Hoon;Jung Oh-Jin;Choi Hyung-Il;Park Sang-Il;Park Dae-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.2 s.83
    • /
    • pp.165-171
    • /
    • 2005
  • A laboratory experiment was performed to investigate the nitrate removal from groundwater using Iron chloride(III) coated activated carbon (ICCAC). The breakthrough profiles of two ionic species, such as nitrate and sulfate showed that nitrate was selectively exchanged with chloride in ICCAC. The $FeCl_3$-coated activated carbon produced about 26 BV (Bed volume) of throughout when treating groundwater containing about $25\;mg/\iota\;of\;NO_3-N$. The regeneration of ICCAC with 1M KC1 was effective at a flow rate of 4 BV/hr. The ion exchange technology seems to be suitable technology for the treatment of small volumes of groundwater polluted by nitrate.

Fracture Properties of Carbon Coated LPS-SiCf/SiC Composites (액상소결을 이용한 탄소코팅 SiCf/SiC복합재료의 파괴특성)

  • Kim, Sung-Won;Lee, Moon-Hee;Hwang, Seung-Kuk;Lee, Sang-Pill
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • Mechanical properties of carbon coated $SiC_f/SiC$ composites have been investigated, in conjunction with a detailed analysis of microstructure. Especially, the fracture behavior of $SiC_f/SiC$ composites by the induction of carbon coating layers has been examined. The matrix region of $SiC_f/SiC$ composites with ultra-fine SiC powders were consolidated by a liquid phase sintering (LPS) process, using a sintering additive of $Al_2O_3-Y_2O_3$ powder compound. In this composite, plain and satin- woven Tyranno SA fabrics were also utilized as a reinforcing material. A carbon interfacial layer was coated around satin-woven SiC fabrics. The characterization of LPS-$SiC_f/SiC$ composites was investigated by means of SEM and three point bending test.

The Characteristics of the Over-current of Shielded Cable and the Fusing Current of Carbon Fiber (탄소섬유의 용단전류 및 차폐 케이블의 과전류 특성)

  • Kim, Young-Seok;Kim, Taek-Hee;Kim, Chong-Min;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1761-1766
    • /
    • 2016
  • In this paper, we investigated the fusing current of carbon fiber and thermal properties of carbon fiber and metal shielded cable due to over-current. The fusing current value for the metal-coated carbon fiber was 5.3A in 3K, 7.4K and 13.05A in 12K. And if it exceeds 50% of the fusing current was broken with a rapid voltage rise. In the case of carbon fiber shielded cable, the temperature of the PVC sheath increased somewhat in the allowable current range. However, the temperature of PVC sheath rapidly increased to $128.1^{\circ}C$ in the 2 time allowable current range. This value is $10^{\circ}C$ higher than the temperature of PVC sheath on the metal screen cable, because the resistance of the carbon fiber is high and heat transfer rate is slow.

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

Improvement of Oxidation Resistance and Erosion Resistance Properties of the C/C Composite with the Multilayer Coating (다층코팅을 이용한 C/C 복합재료의 내산화성 및 내마모성 증진)

  • 김옥희;이승윤;윤병일;박종욱
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1003-1008
    • /
    • 1995
  • CVD-Si3N4/CVD-SiC/pack-SiC/pyro-carbon/(3-D C/C composite) multilayer coating was performed to improve the oxdiation resistance and erosion resistance properteis of the 3-D carbon/carbon composite, and the plasma test was performed to measure the oxidation resistance and erosion resistance properties. The thicknesses of each film layer were about 10${\mu}{\textrm}{m}$ for pack-SiC, 5${\mu}{\textrm}{m}$ for CVD-SiC and 40${\mu}{\textrm}{m}$ for CVD-Si3N4. When the multilayer coated specimen was exposed to the plasma flame with temperature of 500$0^{\circ}C$ for 20 seconds, it showed the weight loss five times less than that of the only pyro-carbon coated specimen.

  • PDF

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Enhancing the Biological Control of Rice Seedling Disease by Adding Specific Carbon Sources into the Bacillus cereus D324 Formulation in Water-Seeded Rice

  • Sim, Jung-Bo;Chung, Ill-Min;Ku, Han-Mo;Choi, Hyoi-Won;Lee, Jong-Moon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • Utilization of carbon sources by Bacillus cereus D324, a biological control agent, and Pythium species, which causes rice seedling disease, was studied with the objective of increasing the efficacy of biological control by providing the biological control agent with specific beneficial carbon sources. D-galactose, D-sorbitol, and D-mannitol were poor carbon sources for Pythium spp. growth but were good for B. cereus D324 growth. Growth in a growth chamber of rice seeds coated with B. cereus D324 amended with specific carbon sources, such as D-galactose and D-sorbitol, showed significantly enhanced seedling emergence compared to seeds coated only with B. cereus D324. Field trials showed that both seedling emergence and yield increased, when the above specific carbon sources were added to B. cereus D324 in seed coating formulations. This result indicated that amending seed coating formulations with specific carbon sources could significantly increase seedling emergence and yield in the field.

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.