• Title/Summary/Keyword: Carbon-carbon coupling reaction

Search Result 34, Processing Time 0.027 seconds

Exploratory Study of Photocyclization Reactions of N-(Trimethylsilylmethylthioalkyl)phthalimides

  • Ung Chan Yoon;Sang Jin Lee;Kyung Ja Lee;Sung Ju Cho;Chan Woo Lee;Patrick S. Mariano
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.154-161
    • /
    • 1994
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethylthioalkyl)phthalimides (alkyl=ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl). Photocyclizations occur in methanol in modest to high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from sulfur in the ${\alpha}$-silylmethylthioalkyl groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate ${\alpha}$ -silylmethylthio cation radicals and cyclization by radical coupling is proposed. In contrast, photoreactions of N-(trimethylsilylmethylthioalkyl)phthalimides in acetone follow different reaction routes to produce another cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon ${\alpha}$ to silicon and sulfur atoms via triplet carbonyl hydrogen abstraction pathway. The normal singlet SET pathway dominates this triplet process for photoreactions of these substances in methanol while the triplet process dominates the singlet SET pathway for those in acetone. The efficient and regioselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Photocyclization Reactions of N-(Trimethylsilylmethoxyalkyl)Phthalimides. Efficient and Regioselective Route to Heterocycles

  • Yoon Ung Chan;Oh Ju Hee;Lee, Sang Jin;Kim, Dong Uk;Lee, Jong Gun;Kang Kyung-Tae;Mariano Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 1992
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethoxyalkyl)phthalimides(alkyl=E thyl, n-propyl, n-butyl, n-pentyl, and n-octyl). Photocyclizations occur in methanol in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from oxygen in the $\alpha-silylmethoxy$ groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate $\alpha-silylmethoxy$ cation radicals and cyclization by radical coupling are proposed. In contrast, photoreaction of N-(trimethylsilylmethoxyethyl) phthalimide in acetone follows different reaction routes to produce two cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon $\alpha$ to silicon and oxygen atoms via triplet carbonyl hydrogen abstraction triplet carbonyl silyl group abstraction pathways. The normal singlet SET pathway dominates these triplet processes for photoreaction of this substance in methanol. The efficient and regioselective cyclization reactions observed for photolysis in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Amino Silane, Vinyl Silane, TESPD, ZS (TESPD/Zinc Complex) Effects on Carbon Black/Clay Filled Chlorobutyl Rubber (CIIR) Compounds Part III: Comparative Studies on Hard Clay and Soft Clay Filled Compounds

  • Kim, Kwang-Jea
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.190-197
    • /
    • 2009
  • Various silanes, amino silane, vinyl silane, sulfur silane (TESPD), and ZS (TESPD/zinc soap complex), are added into chlorinated isobutylene-isoprene copolymer (CIIR)/soft clay/carbon black (CB) and CIIR/hard clay/CB compounds and they are investigated with respect to the vulcanization characteristics, the processability, and the mechanical properties. Comparing hard clay and soft clay filled compounds, hard clay (Suprex) filled system shows a higher die C tear than the soft clay (GK) filled one. The other properties (Mooney, extrusion torque/pressure, torque rise ($M_H-M_L$), modulus at 300%) are close to each other. Among various silanes, the ZS treated hard clay (Suprex) compound shows the highest mechanical property following hard clay(S)/vinyl silane(V) and soft clay(GK)/vinyl silane(V) compounds. The TESPD and the ZS effectively helps a formation of a strong 3-dimensional network structure between silica and CIIR via coupling reaction due to bifunctional nature of TESPD. In addition to that, the ZS added compounds show both a better processability and mechanical properties compared to the S2 ones at low concentration due to improved compatibility between zinc soap and CIIR matrix. Only the ZS added compound shows both improved processabilities (Mooney, Extrusion torque-& pressure) and improved mechanical properties (degree of crosslinking, elongation modulus, tear, and fatigue to failure counts) on both CIIR/hard clay/CB and CIIR/soft clay/CB compounds.

Synthesis and Biological Activities of 8-Arylflavones

  • Dao, Tran-Thanh;Kim, Soo-Bae;Sin, Kwan-Seong;Kim, Sang-Hee;Kim, Hyun-Pyo;Park, Hae-Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.278-282
    • /
    • 2004
  • A number of 8-arylflavones have been synthesized as congeners of wogonin and evaluated for their inhibitory activities of $PGE_2$ production. 8-Arylflavones were obtained from commercially available chrysin via two different synthetic pathways. Most 8-arylflavones exhibited much reduced inhibitory activities against COX-2 catalyzed $PGE_2$ production compared to that of wogonin. Functional group replacement at the 8-position of wogonin from methoxy to aryl group caused loss of inhibitory activity. Our present results imply that the functional group at the 8-position of flavones seems to play very important roles for bioactivity.

XPS Investigation of A3 Coupling Reaction in Room Temperature Ionic Liquids

  • Kwon, Ji-Hye;Youn, So-Won;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1851-1853
    • /
    • 2006
  • We herein report a new analytical application of XPS to the identification of organic molecules in room temperature ionic liquid for the first time. An organic compound, propargylamine (1), produced in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][$PF_6$]), which is one of the room temperature ionic liquids (RTILs), via $A^3$ coupling reaction, is characterized by means of x-ray photoelectron spectroscopy (XPS) rather than using conventional organic compound analysis techniques. There are four non-equivalent carbons in RTILs and 1 each. The ratios of normalized integrated areas of the deconvoluted binding energy of core electron of carbon (C1s) peaks are well matched to the number of carbons in those compounds. The binding energies of C1s of the featured carbons in 1, C4 (sp carbons in acetylene group) and C5 ($sp^2$ carbons in benzene ring), are assigned 286.2 and 285.4 eV, respectively. These results will be able to provide an important tool and a new strategy for the analysis of organic molecules

Production of Vinblastine by Chemical Coupling of Vindoline Extracted from Cultivated Plants and Catharanthine from Hairy Root Cultures in Vinca(Catharanthine roseus) (일일초 잎과 모상근으로부터 추출한 Vindoline과 Catharanthine의 화학결합에 의한 Vinblastine 생산)

  • 곽상수;정경희
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.110-114
    • /
    • 1993
  • Vinblastine, an anticancer agent was produced by chemical coupling of two different monomeric indole alkaloids, vinblastine and catharanthine in the presence of ferric ion. Vindoline was efficiently extracted from the leaves of vinca (Cafharanthus roseus) by using supercritical carbon dioxide, whereas catharanthine was chemically extracted from the in vitro cultured hairy roots. The extracted crude monomeric precursors were purified by a two-step preparative TLC. The coupling reaction was carried out in the 0.1M glycine buffer(pH 2.0, 5ml) containing 40mM FeC13 with purified vindoline(0.3mg) and catharanthine(0.3mg) at 4$^{\circ}C$. The production yields (weight %) of vinblastine and 3', 4'-anhy-drovinblastine in the products were 23.2 and 26.0, respectively. The produced vinblastine was confirmed by FAB-MS.

  • PDF

Synthesis and Temperature Profile Analysis of ZrC by SHS Method (SHS법에 의한 ZrC 합성 및 온도 Profile 분석)

  • Lee, Hyung-Bock;Cho, Kurn;Lee, Jea-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.659-668
    • /
    • 1995
  • Zirconium carbide was prepared from the mixture of metal zirconium and carbon powders in argon atmosphere by Self-propagating High-temperature Synthesis (SHS) in order to obtain the best carbon source and dilution contents. The most exellent result was obtained in the case that active carbon was added as a starting material, 20~30 wt% dilution content. From thermal profile analysis an apparent activation energy of 118 KJ/mol was calculated. The maximum heating rate achieved during 15 wt% ZrC reaction by product dilution method was approximately 1.54$\times$105 K/s. Coupling this value with the measured wave velocity of 1.026cm/s yielded a maximum thermal gradient fo $1.5\times$105 K/cm. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.62$\times$102 $\textrm{cm}^2$/s.

  • PDF

Synthesis of a Fluorene Carbonate from Fluorenyl Epoxide Using Supercritical Carbon Dioxde (초임계이산화탄소를 이용한 플로레닐계 에폭사이드로부터 카보네이트 화합물의 합성)

  • Sim, Yun-Soo;Shim, Jae-Jin;Ra, Choon-Sup
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.239-244
    • /
    • 2010
  • The carboxylation of the fluorenyl epoxide with a spiro framework, 9,9'-Bis(4-oxiranylmethoxyphenyl) fluorine (2) was catalyzed by some onium salts such as quaternary ammonium and phosphonium salts to produce the corresponding five-membered cyclic carbonate (3) in an efficient and environmentally benign fashion. The coupling reactions depend greatly on the kind of the halide anions and alkyl chain length of the onium salts. While the reaction was sensitive to the reaction temperature, the reaction trends suggest that the catalytic efficiency of the quaternary ammonium halides may correlate strongly with the melting points of the halides. The reactions using a catalytic amount (2 mol %) of quaternary ammonium bromide with an n-butyl chain at 75.9 bar of $CO_2$ and 393 K give the highest yield of the cyclic carbonate (92%).

Lanthanide-Oxalate Coordination Polymers Formed by Reductive Coupling of Carbon Dioxide to Oxalate: [Ln2(3,5-pdc)2(C2O4)(H2O)4]·2H2O (Ln = Eu, Sm, Ho, Dy; pdc = Pyridinedicarbox

  • Huh, Hyun-Sue;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1839-1843
    • /
    • 2006
  • Hydrothermal reactions of $Ln(NO_3)_3{\cdot}5H_2O $ (Ln = Eu (1), Sm (2), Ho (3), Dy (4)) with 3,5-pyridinedicarboxylic acid (3,5-pdcH2) in the presence of 4,4'-bipyridine led to the formation of the 3-D Ln(III)-coordination polymers with a formula unit of $[Ln_2(3,5-pdc)_2(C_2O_4)(H_2O)_4]{\cdot}2H_2O$. These polymers contain a bridging oxalate ligand ($C_2O_4\;^2$). On the basis of GCMS study of the mother liquor remaining after the reaction, we proposed that the $C_2O_4\;^2$ formation proceeds in three steps: (1) Ln(III)-mediated decarboxylation of $3,5-pdcH_2$ to give $CO_2$, (2) the reduction of $CO_2$ to $CO_2\;^{\cdot}$ by the Ln(II) species, and (3) the reductive coupling of the two $CO_2\;^{\cdot}$ radicals to the oxalate ($C_2O_4\;^2$) ion. All polymers were structurally characterized by X-ray diffraction.

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.