DOI QR코드

DOI QR Code

Lanthanide-Oxalate Coordination Polymers Formed by Reductive Coupling of Carbon Dioxide to Oxalate: [Ln2(3,5-pdc)2(C2O4)(H2O)4]·2H2O (Ln = Eu, Sm, Ho, Dy; pdc = Pyridinedicarbox

  • Huh, Hyun-Sue (Department of Chemistry (BK21) and Institute of Basic Science, Sungkyunkwan University) ;
  • Lee, Soon W. (Department of Chemistry (BK21) and Institute of Basic Science, Sungkyunkwan University)
  • Published : 2006.11.20

Abstract

Hydrothermal reactions of $Ln(NO_3)_3{\cdot}5H_2O $ (Ln = Eu (1), Sm (2), Ho (3), Dy (4)) with 3,5-pyridinedicarboxylic acid (3,5-pdcH2) in the presence of 4,4'-bipyridine led to the formation of the 3-D Ln(III)-coordination polymers with a formula unit of $[Ln_2(3,5-pdc)_2(C_2O_4)(H_2O)_4]{\cdot}2H_2O$. These polymers contain a bridging oxalate ligand ($C_2O_4\;^2$). On the basis of GCMS study of the mother liquor remaining after the reaction, we proposed that the $C_2O_4\;^2$ formation proceeds in three steps: (1) Ln(III)-mediated decarboxylation of $3,5-pdcH_2$ to give $CO_2$, (2) the reduction of $CO_2$ to $CO_2\;^{\cdot}$ by the Ln(II) species, and (3) the reductive coupling of the two $CO_2\;^{\cdot}$ radicals to the oxalate ($C_2O_4\;^2$) ion. All polymers were structurally characterized by X-ray diffraction.

Keywords

References

  1. Zheng, X.-J.; Jin, L.-P.; Gao, S. Inorg. Chem. 2004, 43, 1600 https://doi.org/10.1021/ic0352699
  2. Ma, B.-Q.; Gao, S.; Su, G.; Xu, G.-X. Angew. Chem. Int. Ed. 2000, 40, 434 https://doi.org/10.1002/1521-3773(20010119)40:2<434::AID-ANIE434>3.0.CO;2-Z
  3. Liu, Q.-D.; Gao, S.; Li, J.-R.; Ma, B.-Q.; Zhou, Q.-Z.; Yu, K.-B. Polyhedron 2002, 21, 1097 https://doi.org/10.1016/S0277-5387(02)00911-7
  4. Sun, D.; Cao, R.; Liang, Y.; Shi, Q.; Hong, M. J. Chem. Soc., Dalton Trans. 2002, 1847
  5. Liang, Y.; Hong, M.; Su, W.; Cao, R.; Zhang, W. Inorg. Chem. 2001, 40, 4574 https://doi.org/10.1021/ic0100929
  6. Li, X.; Cao, R.; Sun, D.; Shi, Q.; Hong, M.; Liang, Y. Inorg. Chem. Commun. 2002, 5, 589 https://doi.org/10.1016/S1387-7003(02)00483-5
  7. Wan, Y.; Zhang, L.; Jin, L.; Gao, S.; Lu, S. Inorg. Chem. 2003, 42, 4985 https://doi.org/10.1021/ic034258c
  8. Bu, X.-H.; Weng, W.; Du, M.; Chen, W.; Li, J.-R.; Zhang, R.-H.; Zhao, L.-J. Inorg. Chem. 2002, 41, 1007 https://doi.org/10.1021/ic010932j
  9. Zhao, B.; Chen, X.-Y.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H. J. Am. Chem. Soc. 2004, 126, 15394 https://doi.org/10.1021/ja047141b
  10. Shi, J.-M.; Xu, W.; Liu, Q.-Y.; Liu, F.-L.; Huang, Z.-L.; Lei, H.; Yu, W.-T.; Fang, Q. Chem. Commun. 2002, 756
  11. Seward, C.; Hu, N.-X.; Wang, S. J. Chem. Soc., Dalton Trans. 2001, 134
  12. Wang, Z.; Jin, C.-N.; Shao, T.; Li, Y.-Z.; Zhang, K.-L.; Zhang, H.- T.; You, X.-Z. Inorg. Chem. Commun. 2002, 5, 642 https://doi.org/10.1016/S1387-7003(02)00515-4
  13. Ma, L.; Evans, O. R.; Foxman, B. M.; Lin, W. Inorg. Chem. 1999, 38, 5837 https://doi.org/10.1021/ic990429v
  14. Zhang, X.-M. Coord. Chem. Rev. 2005, 249, 1201 https://doi.org/10.1016/j.ccr.2005.01.004
  15. Kim, H. J.; Min, D.; Hoe, H. S.; Lee, S. W. J. Korean Chem. Soc. 2001, 45, 507
  16. Min, D.; Lee, S. W. Bull. Korean Chem. Soc. 2002, 23, 948 https://doi.org/10.1007/s11814-006-0013-3
  17. Ghosh, S. K.; Bharadwaj, P. K. Inorg. Chem. 2004, 43, 2293 https://doi.org/10.1021/ic034982v
  18. Min, D.; Yoon, S. S.; Jung, D. Y.; Lee, C. Y.; Kim, Y.; Han, W. S.; Lee, S. W. Inorg. Chim. Acta 2001, 324, 293 https://doi.org/10.1016/S0020-1693(01)00621-1
  19. Min, D.; Yoon, S. S.; Lee, J. H.; Suh, M.; Lee, S. W. Inorg. Chem. Commun. 2001, 4, 297 https://doi.org/10.1016/S1387-7003(01)00197-6
  20. Xu, H.; Zheng, N.; Xu, H.; Wu, Y.; Yang, R.; Ye, E.; Jin, X. J. Mol. Struct. 2002, 606, 117 https://doi.org/10.1016/S0022-2860(01)00858-4
  21. Xu, H.; Zheng, N.; Xu, H.; Wu, Y.; Yang, R.; Ye, E.; Jin, X. J. Mol. Struct. 2002, 610, 47 https://doi.org/10.1016/S0022-2860(02)00005-4
  22. Plater, M. J.; Roberts, A. J.; Howie, R. A. J. Chem. Res. 1998, 240
  23. Plater, M. J.; Foremam, M. R. S. J.; Howie, R. A.; Lachowski, E. E. J. Chem. Res. 1998, 754
  24. Min, D.; Lee, S. W. Inorg. Chem. Commun. 2002, 5, 978 https://doi.org/10.1016/S1387-7003(02)00630-5
  25. Bruker, SHELXTL, Structure Determination Software Programs; Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1997
  26. Anderson, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92, 2450 https://doi.org/10.1021/ja00711a041
  27. Anderson, J. M.; Kochi, J. K. J. Am. Chem. Soc. 1970, 92, 1651 https://doi.org/10.1021/ja00709a039
  28. Sheldon, R. A.; Kochi, J. K. J. Am. Chem. Soc. 1968, 90, 6688 https://doi.org/10.1021/ja01026a022
  29. Kochi, J. K. J. Am. Chem. Soc. 1968, 87, 1811 https://doi.org/10.1021/ja01086a046
  30. Evans, W. J.; Seibel, C. A.; Ziller, J. W. Inorg. Chem. 1998, 37, 770 https://doi.org/10.1021/ic971381t
  31. Farrugia, L. J.; Lopinski, S.; Lovatt, P. A.; Peacock, R. D. Inorg. Chem. 2001, 40, 558 https://doi.org/10.1021/ic000418y
  32. Schumann, H.; Marktscheffel, J. A.; Dietrich, A.; Gorlitz, F. H. J. Organomet. Chem. 1992, 430, 299 https://doi.org/10.1016/0022-328X(92)83266-K
  33. Campion, B. K.; Heyn, R. H.; Tilley, T. D. Inorg. Chem. 1990, 29, 4355 https://doi.org/10.1021/ic00347a001
  34. Clair, M. A. S.; Santasiero, B. D. Acta Crystallogr. 1989, C45, 850
  35. Yan, Y.; Wu, C.-D.; Lu, C.-Z. Z. Anorg. Allg. Chem. 2003, 629, 1991 https://doi.org/10.1002/zaac.200300148

Cited by

  1. In situ oxalate formation during hydrothermal synthesis of uranyl hybrid materials vol.13, pp.23, 2011, https://doi.org/10.1039/c1ce05934c
  2. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots vol.47, pp.9, 2011, https://doi.org/10.1039/c0cc04399k
  3. } (L = 3-Pyridinepropinoate, Ln = Eu, Tb, Nd) vol.12, pp.6, 2012, https://doi.org/10.1021/cg300256k
  4. Temperature-Dependent Structures of Lanthanide Metal–Organic Frameworks Based on Furan-2,5-Dicarboxylate and Oxalate vol.12, pp.6, 2012, https://doi.org/10.1021/cg3004036
  5. Synthetic Control to Achieve Lanthanide(III)/Pyrimidine-4,6-dicarboxylate Compounds by Preventing Oxalate Formation: Structural, Magnetic, and Luminescent Properties vol.51, pp.14, 2012, https://doi.org/10.1021/ic3009392
  6. Hydrogen bonded-extended lanthanide coordination polymers decorated with 2,3-thiophenedicarboxylate and oxalate: synthesis, structures, and properties vol.16, pp.47, 2014, https://doi.org/10.1039/C4CE01734J
  7. Probing phosphate ion via the europium(III)-modulated fluorescence of gold nanoclusters vol.181, pp.15-16, 2014, https://doi.org/10.1007/s00604-014-1299-1
  8. Two Three-Dimensional Lanthanide Frameworks Exhibiting Luminescence Increases upon Dehydration and Novel Water Layer Involving in Situ Decarboxylation vol.53, pp.14, 2014, https://doi.org/10.1021/ic402803s
  9. Zinc-Formate Metal–Organic Frameworks: Watch Out for Reactive Solvents vol.45, pp.4, 2015, https://doi.org/10.1007/s10870-015-0578-y
  10. Synthesis and Characterization of SmIII and EuIII Coordination Compounds of 3-(2-Pyridyl)-1-pyrazolyl Acetic Acid vol.68, pp.7, 2015, https://doi.org/10.1071/CH14501
  11. )–TATAB complex vol.41, pp.21, 2017, https://doi.org/10.1039/C7NJ02155K
  12. ) vol.7, pp.74, 2017, https://doi.org/10.1039/C7RA07991E
  13. Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing vol.19, pp.12, 2013, https://doi.org/10.1002/chem.201204295
  14. Novel (3,4)- and (4,5)-Connected Lanthanide Metal–Organic Frameworks vol.2008, pp.1, 2008, https://doi.org/10.1002/ejic.200700810
  15. New Examples of Metal Coordination Architectures of 3,3′,4,4′-Biphenyltetracarboxylic Acid - Syntheses, Crystal Structures, and Physical Properties vol.635, pp.1, 2009, https://doi.org/10.1002/zaac.200800354
  16. ]cadmium(II)] vol.66, pp.3, 2010, https://doi.org/10.1107/S1600536810005222
  17. Unexpected Formation of the Cobalt-Formate Coordination Polymer [CO3(HCO2)6]·dmf from Co(NO3)2 and 2,2'-Bipyridine-5,5'-dicarboxylic Acid in dmf-EtOH vol.29, pp.12, 2006, https://doi.org/10.5012/bkcs.2008.29.12.2383
  18. Bi(furan)- and Bi(thiophene)-Type Linking Ligands and Their Silver Coordination Polymers: [Ag2L1(NO3)2]n and [Ag2L2(NO vol.29, pp.5, 2006, https://doi.org/10.5012/bkcs.2008.29.5.1065
  19. Crystal Structures and Thermal Properties of 2,6-Dinitrophenol Complexes with Lanthanide Series vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1157
  20. Lanthanide (LaIII/HoIII)-oxalate open framework materials formed by in situ ligand synthesis vol.932, pp.1, 2006, https://doi.org/10.1016/j.molstruc.2009.05.055
  21. Uranium-mediated carbon dioxide activation and functionalization vol.32, pp.1, 2006, https://doi.org/10.1016/j.poly.2011.07.015
  22. Novel Lanthanide Coordination Polymers Prepared by Microwave Heating: [Ln(L)3(H2O)2](H2O)3 (Ln = Eu, Tb, Gd; L = trans-(3-py)-CH=CH-COO) vol.33, pp.6, 2006, https://doi.org/10.5012/bkcs.2012.33.6.2017
  23. A novel La?Mo double-metal polymer from hydrothermal reaction involving in situ formation of oxalate ligand vol.1068, pp.None, 2006, https://doi.org/10.1016/j.molstruc.2014.04.035
  24. Hydrothermal synthesis of a dinuclear copper(II) complex with 2-aminopyrimidine and bridging oxalate ligands: in situ degradation of tartaric acid to oxalate and thermal decomposition to CuO nanoparti vol.50, pp.12, 2020, https://doi.org/10.1080/24701556.2020.1749655
  25. Carbonyl group and carbon dioxide activation by rare-earth-metal complexes vol.49, pp.48, 2006, https://doi.org/10.1039/d0dt03578e