• Title/Summary/Keyword: Carbon-Reduction of Transportation

Search Result 79, Processing Time 0.026 seconds

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Study on Improved Road Geometry Conditions of Chicane Considering the Relationship between Road Geometry and Carbon Emissions Reduction (도로 기하구조와 탄소배출 저감의 연계성을 고려한 시케인 기하구조 조건의 개선에 관한 연구)

  • Lee, Hyung-won;Oh, Heung-Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.115-122
    • /
    • 2015
  • PURPOSES: Recently, many local governments have applied chicanes for traffic calming to ensure environment-friendly comfortable and safe roads. However, the geometry of a chicane is designed for speed reduction using a curved portion. This study aims to improve the road geometry conditions of chicanes for reducing carbon emissions and maintaining appropriate driving speeds by considering the relationship between road geometry and carbon emissions. METHODS: This study was conducted as follows. First, carbon emissions corresponding to changing acceleration of vehicles were studied. Second, vehicle acceleration caused by the relationship between the curve radius and the straight length was studied. Accordingly, desirable conditions of curve radius and length of the straight section for reducing carbon emissions were proposed. RESULTS: The existing literature on chicanes present the minimum value of stagger length and path angle in the primary variable condition. This study suggests the maximum values of the curve radius and length of straight section in the primary variable condition. Therefore, if a vehicle's speed at a chicane is 30 km/h, this study suggests a curve radius of up to 24 m. In addition, if the vehicle's speed is 24 km/h, this study suggests a length of straight section of up to 6.6 m. These are the geometric conditions for considering the control of acceleration to the vehicle's maximum speed. CONCLUSIONS: This paper proposes an application of geometric conditions to reduce carbon emissions and maintain appropriate speeds of vehicles through a combination of curve radius and length of straight section.

An Integrated Multi-Product Inventory Model for a Two-Echelon Supply Chain under Cap-and-Trade Mechanism (배출권거래제 하에서 2단계 공급사슬에서 다품목의 통합재고모형)

  • Kim, Dae-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • Currently many companies are interested in reduction of the carbon emissions associated with their supply chain activities such as transportation and operations. Operational decisions, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Cap-and-trade regulation, sometimes called emissions trading, is a market-based tool to limit greenhouse gas emissions. Under cap-and-trade regulation, emission credits are allocated to the firms and the firms trades emissions under cap-and-trade schemes. In this paper, we propose a single-manufacturer single-buyer two-echelon supply chain problem under the cap-and-trade mechanism incorporating the carbon emissions caused by transportation and warehousing activities where a single manufacturer produces a family of items in order to deliver a family of items to a single buyer at a fixed interval of time for effective implementation of Just-In-Time (JIT) Purchasing. An integrated multi-product lot-splitting model of facilitating multiple shipments in small lots between buyer and manufacturer is developed in a JIT Purchasing environment. Also, an iterative heuristic algorithm is developed to derive the common order interval, the number of intervals for each product and the number of shipments between the buyer and the manufacturer during the common interval. A numerical example is given to illustrate the savings in reduction of total cost and carbon emissions by the inventory model incorporating cap-and-trade mechanism compared to the classical inventory model. The proposed inventory model could be useful for the practical solution of two-echelon supply chain inventory problem under cap-and-trade mechanism.

Evaluating Adaptability of Bimodal Tram in Seoul Metropolitan (수도권 주요축별 바이모달 트램 적용성 평가)

  • Lee, Jun;Jang, Jun-Seok;Eom, Jin-Gi
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2283-2291
    • /
    • 2010
  • This paper evaluated the effectiveness for the case of it introduced the bimodal tram for the capital area adaptability of the bimodal tram in the limelight as the new transportation means of the next generation for capital area major transportation corridor. The KTDB with 1,142 zones was utilized for the analysis and the major transportation axis around the main road in which the traffic is high. The analysis index selected around the transportation index in which it can show up by the bimodal tram application and the decrease rate of the road traffic density, the travel time change, the carbon emission quantity change, and etc. was chosen as a result. It was analyzed as the axis in which the bimodal tram adaptability effect that it is high with the section this relative including the major analyzed result west AnSan IC~ Songsan Bridge, the SuWon terminal ~ SaDang station, the UiJungBu terminal ~ DoBongSan station, and etc. can be appeared and it was predicted that the travel demand reduction on the road of about 4~6% showed up.

  • PDF

Study of Optimization of Ground Vehicles Routes Aiming to Reduce Operational Costs and to Contribute to a Sustainable Development with the Reduction of Carbon Dioxide in the Atmosphere

  • Clecio, A.;Thomaz, F.;Hereid, Daniela
    • The Journal of Economics, Marketing and Management
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The purpose of this paper is to discuss the methodology of optimizing delivery route scheduling using a capacity integer linear programming problem model developed to a previous case study. The methodology suggests a two-stage decision: the first, automatic, where the manager will obtain guidance generated by the solution of the linear programming model, later they could use post-optimization techniques to fine tune to the best operational solution. This study has the goal to reduce the size of service companies' ground transportation fleets, aiming not only to reduce costs and increase competitive advantages but also to lower levels of air pollution and its consequences, traffic and, therefore, the levels of carbon dioxide, allowing for a reduction in envir onmental disasters.

GHG & Energy Goal Management and Low Carbon Railway (온실가스.에너지목표관리와 저탄소 철도)

  • Lee, Cheul-Kyu;Kim, Yong-Ki;Park, Duk-Sin;Lee, Jae-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2961-2964
    • /
    • 2011
  • Greenhouse gas and energy reduction goal management system is announced to reduce national CO2 emission in 2011. The target business sector of the system has to follow the procedure of the system and get the assessment. The percentage of the national CO2 reduction goad is 30 % compared to the amounts of BAU. In railway business sector, 6 bodies are included in this system so that railway industry cannot stay and sustain its better position any more than other transportation industry. Most of the industry except Railway industry is struggling to develop its product more environmentally friendly and get the 3rd party certification like Eco-labelling and Carbon footprint. To get environmental certification, LCA method has to be applied because life cycle approach is needed to respond current environmental requirement. The purpose of this project is to facilitate railway vehicle manufacturer obtaining the environmental certification termed Korea EPD. By doing so, the environmental performance evaluation tool would be developed and modelled within the LCA framework and therefore applied especially for rail vehicle.

  • PDF

A Study on the Effects of Supply of Fuel Cell Electric Vehicles(FCEV) on Trade (수소연료전지차의 도입이 무역에 미치는 효과 분석에 관한 연구)

  • Soo-Young Oh;Hyang-Sook Lee
    • Korea Trade Review
    • /
    • v.47 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • This study analyzes FCEV among measures to respond to climate change policies. In particular, it proposes alternatives to solve this problem in the trade industry, which relies on transportation sectors with high greenhouse gas emissions such as exports and imports of goods. Therefore, when FCEV is introduced in the transportation sector, changes in CO2 emissions, a greenhouse gas, and changes in logistics costs for changes in CO2 emissions are set through scenarios to evaluate the impact on product trade, such as imports and exports. As a result, the increase in logistics costs due to carbon dioxide emissions affected the import and export volume of goods, and when FCEV was introduced, the export volume would increase by up to 5.6%, and the import volume by up to 30%. In addition, CO2 emissions decreased to about 60% in 2050. Therefore, the introduction of FCEV in the transportation sector will greatly contribute to increasing sales in the trading industry and will be able to solve environmental problems such as greenhouse gas reduction.

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.