• Title/Summary/Keyword: Carbon-Fiber-Reinforced Plastics

Search Result 191, Processing Time 0.026 seconds

Usefulness of Carbon Fiber Reinforced Plastics as a Material of Auxiliary Tool for X-ray Imaging (엑스선 촬영 시 보조도구 재료로써 탄소 섬유 강화 플라스틱의 유용성)

  • Joon-Ho Moon;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.197-205
    • /
    • 2023
  • When taking X-rays, various auxiliary tools were used to fix a patient's exact shooting position and posture. In this study, we evaluated the usefulness of carbon fiber reinforced plastics(CFRP) 3K as a material of auxiliary tools by comparing poly methyl metha acrylate(PMMA), polycarbonate(PC), and CFRP 3K each of which has high radiolucency. X-ray radiolucencies were measured by stacking 1 mm panels of each material, and contrast to noise ratio(CNR) and signal to noise ratio(SNR) of images of each material were measured by comparing with None, which stands for images that are taken without any material. All three materials showed over 90% X-ray radiolucencies within 2 ㎜ thickness, and there was no significant difference. PC, PMMA and CFRP 3K had high CNR and SNR in order, and CFRP 3K showed the closest CNR and SNR to those of None. While taking X-rays, by using CFRP 3K material within 2 ㎜ thickness as a material of auxiliary tools, which are used to reduce re-shooting and X-ray exposure by fixing a patient's exact shooting position and posture and improve the quality of medical images, a high X-ray radiolucency of over 90% would be obtained, and the influence on the image could be minimized.

Reinforcement Effect of Reinforced Concrete Beams Strengthened with Grid-type Carbon Fiber Plastics (격자형 탄소섬유로 보강한 R/C보의 보강효과)

  • Jo, Byung-Wan;Tae, Ghi-Ho;Kwon, Oh-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.377-385
    • /
    • 2003
  • Flexural characteristics of the R.C beams strengthened with newly-developed grid-type carbon fiber plastics(CFRP-GRIDS) were investigated. The tests were conducted under the four-points load to the failure to investigate the strengthening effects of CFRP-GRIDS on the beams. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly, the appropriate area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

System Development of Removing Dust and Odor from Manufacturing Process of FRP Products (FRP제품 가공시 발생하는 분진 및 악취 제거 시스템 개발)

  • Yun, Huy Kwan;Kim, Jae Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2009
  • When fiber reinforced plastics (FRP) products are manufactured, dust and odor materials are inevitably generated in a workplace. To improve the bad condition of the workshop, we developed the Hybrid Bag Filter attached activated carbon fiber (ACF) and installed the system at two companies producing FRP goods. In order to raise the efficiency of dust collection, we set the ducts both on the ceiling and at the bottom of the wall and according to the circumstances of the workshop's space, moving dust collector also adopted as a different type of flexible duct. Pulse Jet Type Bag Filter is also equipped to operate the system more effectively, for the improved fine environment because of high dust removal efficiency. Finally, we investigated the removal tendency of the dust and odor when operating the System of Hybrid Bag Filter.

Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for lightning Strike Protection (낙뢰손상방지를 위한 전도성 나노입자 코팅에 의한 탄소섬유 복합재료의 전기전도도 향상 연구)

  • Ha, Min-Seok;Kwon, Oh-Yang;Choi, Heung-Soap
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • The improvement of electrical conductivity of carbon-fiber reinforced plastics (CFRP) has been investigated by silver nano-particles coating for the purpose of lightning strike protection. Silver nano-particles in colloid were sprayed on the surface of carbon fibers, which were then impregnated by epoxy resin to form a CFRP specimen. Electrical resistance was measured by contact resistance meter which utilize the principles of the AC 4-terminal method. Electrical resistance value was then converted to electrical conductivity. The coated silver nano-particles on the carbon fibers were verified by SEM and EDS. The electrical conductivity was increased by three times of the ordinary CFRP.

Eco-friendly Recycling of Carbon Fiber Reinforced Plastics (탄소섬유강화 복합소재의 친환경 재활용 기술)

  • Yu, Ayeong;Bang, Sangpil;Goh, Munju
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.31-37
    • /
    • 2021
  • 일반적으로 cross-link된 열경화성 에폭시수지는 유기용매에 용해되지 않고 열에 용융되지 않는 특성이 있다. 따라서 에폭시수지가 사용된 물질, 특히 탄소섬유강화플라스틱(carbon fiber reinforced plastic, CFRP)은 재활용이 어렵고, 사용 후 폐기물 처리에 막대한 비용이 소비되고 있다. 본 원고는 열경화성 에폭시수지 응용물 중 CFRP의 재활용을 중심으로 한 친환경적 재활용 기술에 관하여 정리하였다. 특히, CFRP의 구성요소인 탄소섬유(CF)와 기지재인 에폭시수지를 모두 재활용 할 수 있는 화학적 방법에 관하여 보고한다. 더 나아가 열경화성 에폭시수지의 화학적 분해물의 재이용기술에 관한 예를 소개한다.

Basic Design of High-Speed Riverine Craft Made of Carbon Fiber Reinforced Polymer

  • Han, Zhiqiang;Choi, Jung-kyu;Hwang, Inhyuck;Kim, Jinyoung;Oh, Daekyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.241-253
    • /
    • 2020
  • The Small-Unit Riverine Craft (SURC) is a small high-speed vessel used by navies and marine corps in relatively shallow waterway environments, such as riverine areas or littoral coasts. In the past, SURCs have primarily been rigid-hulled inflatable boats constructed using composite materials such as glass fiber reinforced plastics. More recently, single-hull SURCs have been manufactured using aluminum for weight reduction. In this study, a Carbon Fiber Reinforced Polymer (CFRP) material was applied instead to examine its feasibility in the basic design of an SURC with a hull length of 10 m. The CFRP structural design was obtained using the properties of a marine CFRP laminate, determined in a previous study. Next, the designed CFRP SURC was modeled to confirm its functionality, then compared with existing aluminum SURCs, indicating that the CFRP SURC was 41.49 % lighter, reduced fuel consumption by 30 %, and could sail 50 NM further for every hour of engine operation. A method for reducing the high cost of carbon fiber was also proposed based on the adjustment of the carbon fiber content to provide the optimum strength where required. The data developed in this study can be used as a basis for further design of CFRP craft.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

Impact Behaviors of Ni-plated Carbon Fibers-reinforced Epoxy Matrix Composites (니켈도금된 탄소섬유 강화 에폭시 수지 복합재료의 충격 특성)

  • 박수진;김병주;이종문
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • In this work, two types of Ni-plating, namely electrolytical and electroless Ni-platings on carbon fiber surfaces, were carried out to enhance the impact resistance of composites. And the comparison between electrolytical and electroless methods on their impact properties of composite system was studied. The surface properties of carbon fibers were characterized using XRD, SEM, and contact angle measurements. The impact behaviors were investigated using an Izod type impact tester. As experimental results, it was observed that electrolessly plated Ni layers had Ni-P alloys on carbon fiber surfaces as revealed by XRD, and electrolytically Ni-plated carbon fibers showed higher surface free energies than those of the electrolessly Ni-plated carbon fibers. In particular, the impact strengths of electrolessly Ni-plated carbon fibers-reinforced plastics were strongly increased. These results were probably due to the difference of wettabilities according to the different types of Ni-plating methods.

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by CFS or CFRP (CFS 및 CFRP로 전단보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선;황성욱;김정구;이석무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.697-702
    • /
    • 1997
  • This study presents test results of RC beams strengthened by carbon fiber sheet (CFS) or carbon fiber reinforced plastics (CFRP) for increasing shear resistance. Fifteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials (CFS, CFRP), shear-strengthening methods (wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The results show that shear-damaged RC beams strengthened by either CFS or CFRP have more improved the shear capacity.

  • PDF

Bending Characteristic of CFRP & Hybrid Shaped Hat Structure Member According to Stacking Orientation Angle (적층각도변화에 따른 CFRP & 혼성 모자형 구조부재의 굽힘 특성)

  • Kim, Ji-Hoon;Kim, Jung-Ho;Cha, Cheon-Seok;Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.34-39
    • /
    • 2008
  • In this study, CFRP(Carbon Fiber Reinforced Plastics) that has high specific strength and elastic modulus and low thermal strain was used as a material for the lightweight structural member. CFRP is a fiber material as anisotropic material. The anisotropic material is characterized by the change of its mechanical properties according to stacking orientation angle. CFRP orientation angle was oriented in [A/B]s in order to examine the effect of CFRP orientation angle on the characteristics of energy absorption. CFRP is very weak to the impact from the outside. So, when impact is applied to CFRP, its strength is rapidly lowered. The hybrid material was manufactured by combining CFRP to aluminum which is lightweight and widely used for structural members of the automobile. The hybrid member was shaped as a side member that could support the automobile engine and mount and absorb a large amount of impact energy at the front-end in case of automobile collision. The bending test device was manufactured in accordance with ASTM standard, and mounted to UTM for bending test. For comparing bending characteristics of the hybrid member with those of Aluminum and CFRP member, tests were performed for aluminum, CFRP and hybrid member, respectively.