• 제목/요약/키워드: Carbon-Carbon Composites

검색결과 2,116건 처리시간 0.031초

국부열손상을 받은 복합재료의 강도특성 및 비파괴평가 (Strength Characteristics and Non-Destructive Evaluation of Composites with Heat Damage)

  • 남기우;김영운
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2002
  • Fourier transform has been one of the most common tools to study the frequency characteristics of signals. With the Fourier transform alone, it is difficult to tell whether signal's frequency contents evolve in time or not. Except for a few special cases, the frequency contents of most signals encountered in the real world change with time. Time-frequency methods are developed recently to overcome the drawbacks of Fourier transform, which can represent the information of signals in time and frequency at the same time. In this study, heat damage process of a carbon fiber reinforced plastic(CFRP) and glass fiber reinforced plastic(GFRP) under monotonic tensile loading was characterized by acoustic emission. Different kinds of specimens were used to determine the characteristics of Strength and AE signals. Time-frequency analysis methods were employed for the analysis of fracture mechanism in CFRP such as matrix cracking, debonding and fiber fracture.

  • PDF

FEM을 이용한 세라믹벨트 변위특성 평가 (Evaluation on Displacement Property of Ceramic Belt by Using FEM)

  • 양성모;유효선;강희용;황영민;송준혁
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.119-124
    • /
    • 2012
  • Ceramics are becoming one of the most important materials due to its good mechanical properties such as high strength, hardness, chemical safety, and high modulus of elasticity. Ceramics have been used widely as a material not only for construction, but also for vehicles, planes, and bones for the human body. Despite these advantages, ceramics have some limitations in actual use due to its brittle fracture characteristic. In order to develop ceramic belt in this study, the data regarding stiffness and strain is necessary. For this purpose, the sensitivities of maximum stress value and displacement are analyzed by applying the load change on ceramic belt with finite element method program.

사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동 (Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Flexural behaviour of CFST members strengthened using CFRP composites

  • Sundarraja, M.C.;Prabhu, G. Ganesh
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.623-643
    • /
    • 2013
  • Concrete filled steel tubular members (CFST) become a popular choice for modern building construction due to their numerous structural benefits and at the same time aging of those structures and member deterioration are often reported. Therefore, actions like implement of new materials and strengthening techniques become essential to combat this problem. The application of carbon fibre reinforced polymer (CFRP) with concrete structures has been widely reported whereas researches related to strengthening of steel structures using fibre reinforced polymer (FRP) have been limited. The main objective of this study is to experimentally investigate the suitability of CFRP to strengthening of CFST members under flexure. There were three wrapping schemes such as Full wrapping at the bottom (fibre bonded throughout entire length of beam), U-wrapping (fibre bonded at the bottom throughout entire length and extended upto neutral axis) and Partial wrapping (fibre bonded in between loading points at the bottom) introduced. Beams strengthened by U-wrapping exhibited more enhancements in moment carrying capacity and stiffness compared to the beams strengthened by other wrapping schemes. The beams of partial wrapping exhibited delamination of fibre and were failed even before attaining the ultimate load of control beam. The test results showed that the presence of CFRP in the outer limits was significantly enhanced the moment carrying capacity and stiffness of the beam. Also, a non linear finite element model was developed using the software ANSYS 12.0 to validate the analytical results such as load-deformation and the corresponding failure modes.

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

Cone형 복합재 Lattice 구조물의 설계 및 공정 연구 (Design and Fabrication of Cone Type Composite Lattice Structures)

  • 도영대;정상기;이상우;장홍빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.307-311
    • /
    • 2011
  • 이 논문은 필라멘트 와인딩 공법으로 제작된 cone형 복합재 lattice 구조물에 대한 연구이다. cone형 복합재 lattice 구조물은 helical rib과 hoop rib 구조로 이루어져 있다. 이 구조는 탄소 섬유를 에폭시수지에 함침 시켜 섬유의 끊어짐이 없이 연속적으로 실리콘 고무 금형의 홈 안에 필라멘트 와인딩 하여 제작한 것이다. 본 연구에서 cone형 복합재 lattice 구조물에 대한 설계 개념과 제작방법에 대해 기술하였다.

  • PDF

Experimental investigation on CFRP-to-concrete bonded joints across crack

  • Anil, Ozgur;Belgin, Cagatay M.;Kara, M. Emin
    • Structural Engineering and Mechanics
    • /
    • 제35권1호
    • /
    • pp.1-18
    • /
    • 2010
  • Bonding of carbon fiber reinforced polymer (CFRP) composites has become a popular technique for strengthening concrete structures in recent years. The bond stress between concrete and CFRP is the main factor determining the strength, rigidity, failure mode and behavior of a reinforced concrete member strengthened with CFRP. The accurate evaluation of the strain is required for analytical calculations and design processes. In this study, the strain between concrete and bonded CFRP sheets across the notch is tested. In this paper, indirect axial tension is applied to CFRP bonded test specimen by a four point bending tests. The variables studied in this research are CFRP sheet width, bond length and the concrete compression strength. Furthermore, the effect of a crack- modeled as a notch- on the strain distribution is studied. It is observed that the strain in the CFRP to concrete interface reaches its maximum values near the crack tips. It is also observed that extending the CFRP sheet more than to a certain length does not affect the strength and the strain distribution of the bonding. The stress distribution obtained from experiments are compared to Chen and Teng's (2001) analytical model.

각종(各種) 충전제(充塡劑)를 배합(配合)한 천연(天然)고무 강황체(加黃體)의 특성(特性)에 관(關)한 연구(硏究) ( I )(동적(動的) 특성(特性)에 관(關)하여) (A Study on Dynamic Properties for the Filler Compounded NR Vulcanizates ( I ))

  • 최재운;허동섭;홍청석
    • Elastomers and Composites
    • /
    • 제19권4호
    • /
    • pp.231-242
    • /
    • 1984
  • NR vulcanizate has its unigue characteristic of cushion, silence, vibration energy absorbtion etc. By reason of the above captioned characters, The vulcanizate has been widely applied to production of auto tires, belts and engine mounts, The purpose of this study is to examine the effect of rubber-filler attachments on the various dynamic properties of the NR vulcanizates. For this study, the elastic modulus and damping values are examined by means of the (RDS) the Good Rich Flexometer. The results of this study showed as follows. The damping values of the vulcaniz ates in the elastic region showed showed strong relations the damping values and the filler characteristics. The vulvanizates filled with carbon black had higher damping values than the vulcanizates loaded with inorganic filler. The Goodrich Flexometer test showed that build up for the silica filled NR vulcanizates was higher than those for which contained other fillers.

  • PDF

내열성 향상을 위한 폴리케톤/탄성체 블렌드 제조 및 특성 (Preparation and Properties of Polyketone/Rubber Blend to Improve Heat-resistance)

  • 윤주호;윤정환;하성문;김종활
    • Elastomers and Composites
    • /
    • 제49권1호
    • /
    • pp.37-42
    • /
    • 2014
  • 폴리케톤은 일산화탄소, 에틸렌, 프로필렌을 단량체로 중합되는 삼중공중합체 (terpolymer)로서 폴리아미드, 플리에스테르, 폴리카보네이트 등의 일반 엔지니어링 플라스틱 소재에 비해 원료 및 중합 공정비가 저렴한 소재이다. 또한 기계적 특성과 내열성, 내화학성, 연료투과성, 내마모성 등이 우수하여 기존 엔지니어링 플라스틱 소재를 대체할 수 있는 환경 친화적인 소재로 주목을 받고 있다. 본 연구에서는 폴리케톤의 내열성을 향상시키기 위해 탄성체(Ethylene propylene copolymer, Nitrile butadiene rubber, Ethylene acrylic rubber)를 배합하여 블렌드물을 제조하였고, 각 소재에 대하여 내열성, 내유성에 평가에 따른 특성을 분석하였다.

전기화학캐패시터용 MWNT 및 MWNT/DAAQ 나노 복합체의 제조 및 전기화학적 거동 (Preparation and Electrochemical Behavior of MWNT and MWNT/DAAQ Nanocomposite Materials for Electrochemical Capacitor)

  • 김홍일;박수길
    • 전기화학회지
    • /
    • 제10권3호
    • /
    • pp.169-174
    • /
    • 2007
  • 화학적 중합방법을 이용하여 HWNT/DAAQ를 합성하여 전기화학적 캐패시터용 전극 소재로서 전기화학적 특성을 연구하였다. XRD pattern 결과에서 MWNT/DAAQ의 표면에 DAAQ가 oligomer 상태로 존재하는 것을 확인 하였으며, SEM image를 통해 표면을 관찰하였고, TCA를 통해 열적안정성을 확인하였다. 활성탄과 MWNT/DAAQ에 기초한 전극의 용량은 1M의 $H_2SO_4$ 전해질 상에서 97F/g의 비방전용량을 확인되었으며, 또한 HWNT/DAAQ 복합 전극은 우수한 전기화학적 거동을 보이는 것을 관찰하였다.