• Title/Summary/Keyword: Carbon-13

Search Result 2,005, Processing Time 0.025 seconds

Carbon and Oxygen Isotope Studies of the Paleozoic Limestones from the Taebaegsan Region, South Korea (한국(韓國) 태백산지역(太白山地域)에 분포(分布)하는 고생대(古生代) 석회암(石灰岩)의 탄소(炭素)와 산소(酸素) 동위원소(同位元素)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1980
  • ${\delta}^{13}C$ and ${\delta}^{18}O$ values were determined for the Paleozoic limestones (Great Linestone Series) from the Taebaegsan region and the age-unknown limestones (Janggun Formation) from the Janggun mine, Korea. Limestones of the Great Limestone Series exhibit a range of carbon isotopic composition from -4.5 +1.3‰ with a mean ${\delta}^{13}C$ value of -1.1‰, relative to the PDB standard, and of oxygen isotpic composition from +8.8 to +23.3‰ with a mean ${\delta}^{18}O$ value of +16.0‰, relative to the SMOW, falling into the normal marine limestone range according to Keith and Weber (1964), and Degens and Epstein(1964). Carbon isotopic composition of limestones of the Great Limestone Series becomes progressively lighter from Pungchon limestone of middle Cambrian age to mid-Ordovician Maggol limestone, possibly due to change in depositional environment in the Taebaegsan basin. Variation in isotopic composition of limestones from Hwajeol to Dumugal formation offers the possibility or deposition in shallow sea environment, in which fresh waters were added in several stages. Janggun limestone of unknown age may be corelated with the Paleozoic limestones of Great Limestone Series as infered from the istopic composition ranging from -2.8 to + 0.7‰ of ${\delta}^{13}C$ and +13.4 to +22.4‰ of ${\delta}^{18}O$.

  • PDF

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

Fabrication and Properties of Self-diagnosis GFRP for Low Loading (저하중용 자기진단 GFRP의 제조와 특성)

  • Shin, Soon-Gi;Lim, Hyun-Ju;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.732-736
    • /
    • 2003
  • A CP-GFRP(Carbon Powder-Glass Fiber Reinforced Plastic) sensor was fabricated for fracture detection. The electric resistance of the sensor was measured on condition of various composition of carbon powders and thickness of bundle of glass fibers. The resistance of the sensor was decreased as the increase of the content of carbon powders and the TEX of the glass fibers. In the case of loading on CP-GFRP, because inner crack was propagated, the part of percolation structures was disconnected. These observations show the following results. The conduction of CP-GFRP sensor is due to percolation structure of carbon powders and increase of resistance is due to expansion of cracks.

Effect of Moisture Absorption on the Flexural Properties of Basalt/CNT/Epoxy Composites

  • Kim, Man-Tae;Rhee, Kyong-Yop;Kim, Hyeon-Ju;Jung, Dong-Ho
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.187-189
    • /
    • 2012
  • This study investigates the flexural properties of multi-walled carbon nanotube (MWCNT) reinforced basalt/epoxy composites under conditions with and without moisture absorption. The basalt/CNT/epoxy composites were fabricated using 1 wt% silanized MWCNTs and kept in seawater for over 4 months. The flexural properties of the moisture absorbed specimens were evaluated and compared with those of dry specimens. The flexural properties of basalt/CNT/epoxy composites were found to decrease with moisture absorption. The flexural strength and modulus of moisture absorbed specimens were 22% and 16% lower, respectively, than those of the dry specimen. Scanning electron microscope examination of the fracture surfaces revealed that the decreases of flexural properties in the moisture absorbed specimen were due to the weakening of interfacial bonding from swelling of the epoxy matrix.

Effect of vacuum regeneration of activated carbon on volatile organic compound adsorption

  • Pak, Seo-Hyun;Jeon, Yong-Woo
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.169-174
    • /
    • 2017
  • Vacuum swing adsorption (VSA) is a promising treatment method for volatile organic compounds (VOCs). This study focuses on a VSA process for regenerating activated carbon spent with VOCs, and then investigates its adsorption capacities. Toluene was selected as the test VOC molecule, and the VSA regeneration experiments results were compared to the thermal swing adsorption process. Cyclic adsorption-desorption experiments were performed using a lab-scale apparatus with commercial activated carbon (Samchully Co.). The VSA regeneration was performed in air (0.5 L/min) at 363.15 K and 13,332 Pa. The comparative results depicted that in terms of VSA regeneration, it was found that after the fifth regeneration, about a 90% regeneration ratio was maintained. These experiments thus confirm that the VSA regeneration process has good recovery while operating at low temperatures (363.15 K) and 13,332 Pa.

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(II)-TEM Study (이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(II)-TEM을 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.749-755
    • /
    • 2003
  • A development of micropores of $CO_2$activated isotropic carbon fibers from TEM was observed. It was observed that the micropores of activated carbon fibers(ACFs) were consisted of slit-shaped pores(SP) and cylinder-shaped pores(CP). The SPs were formed between two parallel-carbon layers, and the CPs were formed at a place which is connected polygonally by more than two carbon layers. It was shown that the CPs of the ACFs were developed at high degree of burn-offs and at high activation temperature. The pore size distribution of the best ACF, which was observed at a highest value of specific surface area(3,495 $\m^2$/g), showed a continuous distribution in the range of about $4∼l5\AA$, and the median pore size was 6.7$\AA$. The super-high specific surface area of ACFs was found to be due to that the SPs were connected with a maximum size of 7∼8$\AA$ continuously, It is possible that the SPs should be formed in the ACFs in order to show super-high SSA.

Synthesis and Properties of Polyimide Composites Containing Graphene Oxide Via In-Situ Polymerization

  • Zhu, Jiadeng;Lee, Cheol-Ho;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.

Fabrication and Applications of Carbon Nanotube Fibers

  • Choo, Hungo;Jung, Yeonsu;Jeong, Youngjin;Kim, Hwan Chul;Ku, Bon-Cheol
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.191-204
    • /
    • 2012
  • Carbon nanotubes (CNTs) have exceptional mechanical, electrical, and thermal properties compared with those of commercialized high-performance fibers. For use in the form of fabrics that can maintain such properties, individual CNTs should be held together in fibers or made into yarns twisted out of the fibers. Typical methods that are used for such purposes include (a) surfactant-based coagulation spinning, which injects a polymeric binder between CNTs to form fibers; (b) liquid-crystalline spinning, which uses the nature of CNTs to form liquid crystals under certain conditions; (c) direct spinning, which can produce CNT fibers or yarns at the same time as synthesis by introducing a carbon source into a vertical furnace; and (d) forest spinning, which draws and twists CNTs grown vertically on a substrate. However, it is difficult for those CNT fibers to express the excellent properties of individual CNTs as they are. As solutions to this problem, post-treatment processes are under development for improving the production process of CNT fibers or enhancing their properties. This paper discusses the recent methods of fabricating CNT fibers and examines some post-treatment processes for property enhancement and their applications.

Photocyclization Reactions of N-(Trimethylsilylmethoxyalkyl)Phthalimides. Efficient and Regioselective Route to Heterocycles

  • Yoon Ung Chan;Oh Ju Hee;Lee, Sang Jin;Kim, Dong Uk;Lee, Jong Gun;Kang Kyung-Tae;Mariano Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 1992
  • Studies have been conducted to explore single electron transfer (SET) induced photocyclization reactions of N-(trimethylsilylmethoxyalkyl)phthalimides(alkyl=E thyl, n-propyl, n-butyl, n-pentyl, and n-octyl). Photocyclizations occur in methanol in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the trimethylsilyl group. Mechanism for these photocyclizations involving intramolecular SET from oxygen in the $\alpha-silylmethoxy$ groups to the singlet excited state phthalimide moieties followed by desilylation of the intermediate $\alpha-silylmethoxy$ cation radicals and cyclization by radical coupling are proposed. In contrast, photoreaction of N-(trimethylsilylmethoxyethyl) phthalimide in acetone follows different reaction routes to produce two cyclized products in which carbon-carbon bond formation takes place between the phthalimide carbonyl carbon and the carbon $\alpha$ to silicon and oxygen atoms via triplet carbonyl hydrogen abstraction triplet carbonyl silyl group abstraction pathways. The normal singlet SET pathway dominates these triplet processes for photoreaction of this substance in methanol. The efficient and regioselective cyclization reactions observed for photolysis in methanol represent synthetically useful processes for construction of medium and large ring heterocyclic compounds.

Comparative Study on the Ocean Disposal Methods of Carbon Dioxide (이산화탄소 해양 분사방법에 대한 비교연구)

  • Kim Nam-Jin;Kim Chong-Bo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.301-310
    • /
    • 2004
  • Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere. So, in the present study, calculations of the solubility, the surface concentration and the dissolution behavior of carbon dioxide when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show that liquid carbon dioxide changes to carbon dioxide bubbles around 500m in depth, and the hydrate acts as a resistant layer for the dissolution of liquid carbon dioxide. Also. the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.