• Title/Summary/Keyword: Carbon steels

Search Result 420, Processing Time 0.024 seconds

- Analysis of Likelihood of Failure for the External Corrosion of Carbon and Low Alloy Steels through the Quantitative Risk Based Inspection using API-581 - (API-581에 의한 정량적 위험기반검사에서 탄소강 및 저합금강의 외부부식에 치한 사고발생 가능성 해석)

  • Lee Hern Chang;Kim Hwan Joo;Jang Seo Il;Kim Tae Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.4
    • /
    • pp.239-248
    • /
    • 2004
  • Likelihood of failure for the external corrosion of carbon and low alloy steels, which affect to a risk of facilities, was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that the technical module subfactor (TMSF) decreased as the inspection number increased and it increased as the Inspection effectiveness and the used year increased. In this condition, the TMSF showed high value for the case of the marine/cooling tower drift area as a corrosion driver, poor quality of coating, no insulation, and low insulation condition.

Weldability of boron containing low carbon quenched and tempered 60kg/mm$^{2}$ steel with low cold cracking susceptibility (저탄소 B 첨가 60kg/mm$^{2}$급 저균열감수성 조질고강력강의 용접성)

  • 장웅성;김태웅;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • The weldability and joint performance were evaluated for newly developed 60kg/mm$\^$2/ steel which had low cold cracking susceptibility. The main results obtained were as follows; In case of quenched and tempered 60kg/mm$\^$2/ steels, it was very effective to improve weldability and joint performance by lowering carbon and Pcm level. Very small addition of about 0.001 to 0.002wt% boron exhibited an appreciable compensation effect on strength which was decreased by lowering carbon and Pcm level. As a result, the newly developed steel was able to be welded without preheating and exhibited superior joint performance to conventional steels.

  • PDF

Effect of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of P-No. 1 Carbon Steels (P-No. 1 탄소강의 기계적 특성과 미세조직에 미치는 용접후열처리의 영향)

  • Lee, Seung-Gun;Kang, Yongjoon;Kim, Gi-Dong;Kang, Sung-Sik
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • This study aims to investigate the suitability of requirement for post-weld heat treatment(PWHT) temperature when different P-No. materials are welded, which is defined by ASME Sec. III Code. For SA-516 Gr. 60 and SA-106 Gr. B carbon steels that are typical P-No. 1 material, simulated heat treatment were conducted for 8 h at $610^{\circ}C$, $650^{\circ}C$, $690^{\circ}C$, and $730^{\circ}C$, last two temperature falls in the temperature of PWHT for P-No. 5A low-alloy steels. Tensile and Charpy impact tests were performed for the heat-treated specimens, and then microstructure was analyzed by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. The Charpy impact properties deteriorated significantly mainly due to a large amount of cementite precipitation when the temperature of simulated heat treatment was $730^{\circ}C$. Therefore, when dissimilar metal welding is carried out for P-No. 1 carbon steel and different P-No. low alloy steel, the PWHT temperature should be carefully selected to avoid significant deterioration of impact properties for P-No. 1 carbon steel.

The Martensitic Phase Transformation and Texture Development in Hadfield's Steels (Hadfield강에서의 마르텐사이트 상변태와 결정방위조직과의 관계 연구)

  • Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.858-868
    • /
    • 1995
  • Texture development and martensitic phase transformation, on rolling, are compared in two Hadfield's steels, one having low carbon content(0.65wt% C), the other high carbon content(1.35wt%). In spite of small difference in stacking fault energy(about 2 mJm$^{-2}$ ) between two Hadfield's steels, the differences in texture development are observed. In low carbon steel, the textures developed are similar to those of low stacking fault energy metals in low strain range. However, the abnormal textures such as {111} , {110} <001> are strongly developed at high strain, which are due to the disturbance of u martensite in the development of textures formed at the packets of shear bands or at the grain boundaries. In contrast to low carbon Hadfield's steel( LCHS), the texture development of high carbon Hadfield's steel(HCHS) is simitar to those of low stacking fault energy metals in the whole strain range. This may be due to the fact that the amount of deformation induced martensite was small, as observed by A.C. magnetic susceptibility and iron particle tests.

  • PDF

Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe (이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향)

  • Kim, K.T.;Um, S.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향)

  • Lee, Seung-Yong;Jeong, Sang-Woo;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

The Effect of Mn, Cr addition on Graphitization in High Carbon Steel (고탄소강의 흑연화에 미치는 Mn, Cr의 영향)

  • Woo, Kee-Do;Kim, Sug-Won;Kim, Dae-Young;Park, Young-Koo;Ryu, Jae-Hwa
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 1997
  • In high carbon steels, the cementite phase is more unstable thermally than graphite, and it can lead to a marked deterioration in the formability. Many studies have been carried out to evaluate the effect of the fundamental elements on the graphitization of cementite in high carbon steels. In this present work, the effect of Mn, Cr addition on graphitization in Fe-0.65%C-1.0%Si steel has been investigated by means of hardness testing, optical microscopy and EPMA. The nucleation of graphite may mostly depend on the dissolution rate of cementite into ferrite and the number of the nucleation sites of graphite. The graphitization was promoted by the addition of 0.1%Mn in high carbon steel, but retarded by more addition than 0.5% of Mn. By the more addition of Cr than 0.1%, the graphitization of high carbon steel was strongly retarded. Because Mn was moderate anti-graphitizer, but Cr was stroug anti-graphitizer.

  • PDF

Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

  • Kim, Yeong H.;Lee, Yong H.;Lee, Yong D.
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.324-327
    • /
    • 2008
  • Stainless steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance, a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels (Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동)

  • Byun, Sang-Ho;Oh, Chang-Suk;Nam, Dae-Geun;Kim, Young-Seok;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.