• Title/Summary/Keyword: Carbon sequestration

Search Result 276, Processing Time 0.024 seconds

Addressing the concept of Methane and Carbon emissions by wetlands and the Status of Wetlands India: A Review

  • Farheen, Kaggalu Shaista;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.462-462
    • /
    • 2022
  • Wetlands are one of the most vital natural habitats on the planet. India is incredibly blessed to have a number of multifunctional wetland ecosystems. Wetlands, in addition to their functional importance, can act as sources or sinks for greenhouse gases (GHGs) depending on their intrinsic factors. Carbon (CO2) and Methane (CH4) are the major greenhouse gases (GHG's) emitted in wetlands. It is demonstrated that, despite having 4.6 percent of its area covered by natural or man-made wetlands, being home to a large number of wetlands, and being the world's second largest cultivator of paddy, India's wetlands, including paddy fields that are intermittently flooded as typical wetlands, have been very poorly studied in terms of GHG emissions. The purpose of this paper is to examine the status of Indian wetlands and wetlands in terms of CH4 and CO2 emissions. The present study also reviews various literature to provide the equations, parameters that are required for estimating carbon and methane and some of the best strategies for conserving carbon in wetlands. The findings suggest that both non-manipulative and manipulative measures can be used to improve Carbon Sequestration (CS). Non-manipulative measures aim to improve CS by increasing the spatial extent of wetlands, whereas manipulative measures aim to change the characteristics of specific wetland components that influence CS. Uncertainty in carbon dynamics projections under changing environmental conditions is caused by a number of Knowledge gaps: i) There is a lack of knowledge on how organic matter mineralizes and partitions into carbon dioxide, methane, and dissolved organic carbon, ii) With the notable exception of methane dynamics, models that represent the dynamic interaction of processes and their controls have yet to be established. As a result, more research is needed to fully understand the importance of wetlands in terms of GHG emissions and carbon sequestration in India.

  • PDF

Comparison of Carbon Storage Based on Alternative Action by Land Use Planning (토지이용에 따른 대안별 탄소 저장량 비교)

  • Seulki Koo;Youngsoo Lee;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.377-388
    • /
    • 2023
  • Carbon management is emerging as an important factor for global warming control, and land use change is considered one of the causes. To quantify the changes in carbon stocks due to development, this study attempted to calculate carbon storage by borrowing the formula of the InVEST Carbon Storage and Sequestration Model (InVEST Model). Before analyzing carbon stocks, a carbon pool was compiled based on previous studies in Korea. Then, we estimated the change in carbon stocks according to the development of Osong National Industrial Park (ONIP) and the application of alternatives. The analysis shows that 16,789.5 MgC will be emitted under Alternative 1 and 16,305.3 MgC under Alternative 2. These emissions account for 44.4% and 43.1% of the pre-project carbon stock, respectively, and shows that choosing Alternative 2 is advantageous for reducing carbon emissions. The difference is likely due to the difference in grassland area between Alternatives 1 and 2. Even if Alternative 2 is selected, efforts are needed to increase the carbon storage effect by managing the appropriate level of green cover in the grassland, creating multi-layered vegetation, and installing low-energy facilities. In addition, it is suggested to conserve wetlands that can be lost during the stream improvement process or to create artificial wetlands to increase carbon storage. The assessment of carbon storage using carbon pools by land cover can improve the objectivity of comparison and evaluation analysis results for land use plans in Environmental Impact Assessment and Strategic Environmental Impact Assessment. In addition, the carbon pool generated in this study is expected to be used as a basis for improving the accuracy of such analyses.

Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System (이산화탄소 격리저장시스템의 역학적 안정성 평가를 위한 주입온도 및 주입량 시나리오 해석)

  • Kim, A-Ram;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.12-23
    • /
    • 2016
  • For a successful accomplishment of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed and optimized for site specific geological conditions. In this study, we evaluated the effect of injection conditions such as injection temperature and injection rate on the geomechanical stability of CCS system in terms of TOUGH-FLAC simulator, which is one of the well-known T-H-M coupled analysis methods. The stability of the storage system was assessed by a shear slip potential of the pre-existing fractures both in a reservoir and caprock, expressed by mobilized friction angle and Mohr stress circle. We demonstrated that no tensile fracturing was induced even in the cold CO2 injection, where the injected CO2 temperature is much lower than that of the reservoir and tensile thermal stress is generated, but shear slip of the fractures in the reservoir may occur. We also conducted a scenario analysis by varying injected CO2 volume per unit time, and found out that it was when the injection rate was decreasing in a step-wise that showed the least potential of a shear slip.

Effect of Carbon Sequestration and Oxygen Production of Trees on Kangwon National University Campus

  • Hyeong-Uk Ahn;Yun Eui Choi;Sung-Ho Kil;Hyun-Kil Jo
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.128-139
    • /
    • 2023
  • Urban forests serve multiple purposes by providing green resting spaces and environmental benefits for city residents. In the old city center, where parks are scarce, the campus of Kangwon National University, Chuncheon, Gangwon-do, South Korea, serves as an urban forest for students, faculty, and citizens. This study aims to quantitatively analyze the environmental functions of green spaces on campus, raising awareness about their importance among campus members. The total carbon storage of campus trees was estimated at 1,653,218 kg, including 1,512,586 kg in forest areas, 131,061 kg in planting spaces around buildings, and 9,571 kg in street spaces. The annual carbon uptake of campus trees was estimated to be 39,391 kg/year, with 30,144 kg/year in forest areas, 8,017 kg/year in planting spaces around buildings, and 1,230 kg/year in horizontal spaces. In addition, annual oxygen production was estimated to be 105,044 kg/year, with 80,385 kg/year in forest areas, 21,378 kg/year in planting spaces around buildings, and 3,281 kg/year in street spaces. Furthermore, we estimated carbon emissions from the use of on-campus facilities to be 4,856,182 kg/year, while oxygen consumption by members was estimated at 53,975 kg/year. However, the campus trees supplied a sufficient amount of oxygen, which was twice the amount required by school members. The carbon uptake amount was approximately 1% of the amount of carbon emissions, resulting in a modest contribution to improving the environmental conditions of the site.

Evaluation of Efficiency to Plant Growth in Horticultural Soil Applied Biochar Pellet for Soil Carbon Sequestration (토양 탄소 격리 적용을 위한 바이오차 팰렛 혼합 상토를 사용한 작물 재배 효율성 평가)

  • Shin, JoungDu;Choi, YoungSu;Choi, Eunjung;Kim, MyungSook;Heo, JeongWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • Objective of this experiment was to evaluate efficiency of application of biochar pellet in case of application of soil carbon sequestration technology. The treatments were consisted of control as general agricultural practice method, pellet(100% pig compost), biochar pellets with mixture ratio of pig compost(9:1, 8:2, 6:4, 4:6, 2:8) for comparatives of pH, EC, $NH_4-N$ and $NO_3-N$ concentrations, and yields in the nursery bed applied biochar pellets after lettuce harvesting. The application rates of biochar pellet was 6.6g/pot regardless of their mixed rates based on recommended amount of application (330kg/10a) for lettuce cultivation. pH in the nursery bed applied different biochar pellets after lettuce harvesting was only increased in the treatment plot of pig compost pellet application, but decreased in 4:6 and 2:8 pellet application plots. However, EC was observed to be not significantly different among the treatments. $NH_4-N$ concentration was only increased in the treatment plot of pig compost pellet application, but $NO_3-N$ concentrations were decreased as compared to the control. Yields in the treatments of 9:1, 8:2 and 4:6 biochar pellet application plot were increased from 9.5% to 11.4%. Therefore, this biochar pellet application might be useful for soil carbon sequestration and greenhouse gas mitigation in the agricultural farming practices because it was appeared to be a positive effect on lettuce growth.

Reservoir Modeling for Carbon Dioxide Sequestration and Enhanced Oil Recovery (이산화탄소 지중저장과 원유 회수증진 공정을 위한 저류층 모델링)

  • Kim, Seung-Hyok;Lee, Jong-Min;Yoon, En-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2012
  • Manifold researches for carbon capture and storage (CCS) have been developed and large scale-carbon capture system can be performed recently. Hence, the technologies for $CO_2$ sequestration or storage become necessary to handle the captured $CO_2$. Among them, enhanced oil recovery using $CO_2$ can be a solution since it guarantees both oil recovery and $CO_2$ sequestration. In this study, the miscible flow of oil and $CO_2$ in porous media is modeled to analyze the effect of enhanced oil recovery and $CO_2$ sequestration. Based on Darcy-Muskat law, the equation is modified to consider miscibility of oil and $CO_2$ and the change of viscosity. Finite volume method is used for numerical modeling. As results, the pressure and oil saturation changes with time can be predicted when oil, water, and $CO_2$ are injected, respectively, and $CO_2$ injection is more efficient than water injection for oil recovery.

Kelps in Korea: from population structure to aquaculture to potential carbon sequestration

  • Hwang, Eun Kyoung;Boo, Ga Hun;Graf, Louis;Yarish, Charles;Yoon, Hwan Su;Kim, Jang Kyun
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.85-103
    • /
    • 2022
  • Korea is one of the most advanced countries in kelp aquaculture. The brown algae, Undaria pinnatifida and Saccharina japonica are major aquaculture species and have been principally utilized for human food and abalone feed in Korea. This review discusses the diversity, population structure and genomics of kelps. In addition, we have introduced new cultivar development efforts considering climate change, and potential carbon sequestration of kelp aquaculture in Korea. U. pinnatifida showed high diversity within the natural populations but reduced genetic diversity in cultivars. However, very few studies of S. japonica have been conducted in terms of population structure. Since studies on cultivar development began in early 2000s, five U. pinnatifida and one S. japonica varieties have been registered to the International Union for the Protection of New Varieties of Plants (UPOV). To meet the demands for seaweed biomass in various industries, more cultivars should be developed with specific traits to meet application demands. Additionally, cultivation technologies should be diversified, such as integrated multi-trophic aquaculture (IMTA) and offshore aquaculture, to achieve environmental and economic sustainability. These kelps are anticipated to be important sources of blue carbon in Korea.

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.