Browse > Article
http://dx.doi.org/10.4490/algae.2022.37.3.3

Kelps in Korea: from population structure to aquaculture to potential carbon sequestration  

Hwang, Eun Kyoung (Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science)
Boo, Ga Hun (Department of Biological Sciences, Sungkyunkwan University)
Graf, Louis (Department of Biological Sciences, Sungkyunkwan University)
Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut)
Yoon, Hwan Su (Department of Biological Sciences, Sungkyunkwan University)
Kim, Jang Kyun (Department of Marine Science, Incheon National University)
Publication Information
ALGAE / v.37, no.2, 2022 , pp. 85-103 More about this Journal
Abstract
Korea is one of the most advanced countries in kelp aquaculture. The brown algae, Undaria pinnatifida and Saccharina japonica are major aquaculture species and have been principally utilized for human food and abalone feed in Korea. This review discusses the diversity, population structure and genomics of kelps. In addition, we have introduced new cultivar development efforts considering climate change, and potential carbon sequestration of kelp aquaculture in Korea. U. pinnatifida showed high diversity within the natural populations but reduced genetic diversity in cultivars. However, very few studies of S. japonica have been conducted in terms of population structure. Since studies on cultivar development began in early 2000s, five U. pinnatifida and one S. japonica varieties have been registered to the International Union for the Protection of New Varieties of Plants (UPOV). To meet the demands for seaweed biomass in various industries, more cultivars should be developed with specific traits to meet application demands. Additionally, cultivation technologies should be diversified, such as integrated multi-trophic aquaculture (IMTA) and offshore aquaculture, to achieve environmental and economic sustainability. These kelps are anticipated to be important sources of blue carbon in Korea.
Keywords
aquaculture; climate change; cultivar; genetics; population structure; Saccharina japonica; Undaria pinnatifida;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Neushul, M. 1980. Approaches to yield studies and an assessment of foreign macroalgal farming technology. In Proc. Bio-Energy: '80 World Congr. Exp. Bio-Energy Council, Washington, DC, pp. 59-75.
2 Neushul, M. 1986. Marine farming: macroalgal production and genetics. Final technical report (May 1980-December 1986). Gas Research Institute, Chicago, IL, 185 pp.
3 Ortega, A., Geraldi, N. R., Alam, I., Kamau, A. A., Acinas, S. G., Logares, R., Gasol, J. M., Massana, R., Krause-Jensen, D. & Duarte, C. M. 2019. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12:748-754.   DOI
4 Park, C. -W., Choi, K. -J., Soh, E. -H. & Koh, H. -J. 2016. Study on the future development direction of plant variety protection system in Korea. Korean J. Breed. Sci. 48:11-21.   DOI
5 North, W. J., Gerard, V. A. & Kuwabara, J. 1982. Farming Macrocystis at coastal and oceanic sites. In Srivastava, L. M. (Ed.) Synthetic and Degradative Processes in Marine Macrophytes. Walter de Gruyter, Berlin, pp. 247-262.
6 Kawai, H., Hanyuda, T., Ridgway, L. M. & Holser, K. 2013. Ancestral reproductive structure in basal kelp Aureophycus aleuticus. Sci. Rep. 3:2491.   DOI
7 Kawai, H., Hanyuda, T. & Uwai, S. 2016. Evolution and biogeography of Laminarialean kelps. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography. Springer Netherlands, Dordrecht, pp. 227-249.
8 Kim, J. K., Stekoll, M. & Yarish, C. 2019. Opportunities, challenges and future directions of open-water seaweed aquaculture in the United States. Phycologia 58:446-461.   DOI
9 Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13.   DOI
10 Kim, Y. D., Shim, J. M., Park, M. S., Hong, J. -P., Yoo, H. I., Min, B. H., Jin, H. -J., Yarish, C.& Kim, J. K. 2013. Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef. Algae 28:365-369.   DOI
11 Chung, I. K. 2007. Seaweed coastal CO2 removal belt in Korea and algal paper and biofuel. In United Nations Framework Conv. Clim. Change 13th Conf. Parties, United Nations Framework Convention on Climate Change, Rio de Janeiro.
12 Bringloe, T. T., Starko, S., Wade, R. M., Vieira, C., Kawai, H., De Clerck, O., Cock, J. M., Coelho, S. M., Destombe, C., Valero, M., Neiva, J., Pearson, G. A., Faugeron, S., Serrao, E. A. & Verbruggen, H. 2020. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39:281-321.   DOI
13 Buck, B. H., Krause, G. & Rosenthal, H. 2004. Extensive open ocean aquaculture development within wind farms in Germany: the prospect of offshore co-management and legal constraints. Ocean Coast. Manag. 47:95-122.   DOI
14 Buschmann, A. H., Camus, C., Infante, I., Neori, A., Hernandez-Gonzalez, M. C., Pereda, S. V., Gomez-Pinchetti, J. L., Golberg, A., Tadmor-Shalev, N. & Critchley, A. T. 2017. Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 52:391-406.   DOI
15 Chang, J. W. & Geon, S. H. 1970. Studies on the culture of Laminaria. (1) On the transplantation of tangle Laminaria religiosa Miyabe in temperate zone (the coast of Ilsan-Dong, Ulsan city). Bull. Fish. Res. Dev. Agency 5:63-75.
16 Choi, K. -J. 2020. Development of the automation system for seaweed biomass mass production. J. Korean Soc. Ind. Converg. 23:351-359.
17 Daguin, C., Voisin, M., Engel, C. & Viard, F. 2005. Microsatellites isolation and polymorphism in introduced populations of the cultivated seaweed Undaria pinnatifida (Phaeophyceae, Laminariales). Conserv. Genet. 6:647-650.
18 Kimura, K., Nagasato, C., Uwai, S. & Motomura, T. 2010. Sperm mitochondrial DNA elimination in the zygote of the oogamous brown alga Undaria pinnatifida (Laminariales, Phaeophyceae). Cytologia 75:353-361.   DOI
19 Klimova, A. V. & Klochkova, T. A. 2021. Cytological and chromosomal features of Alaria species (Laminariales, Phaeophyceae) from Kamchatka. Bull. Kamchatka State Tech. Univ. 58:71-86.   DOI
20 Kogame, K., Uwai, S., Shimada, S. & Masuda, M. 2005. A study of sexual and asexual populations of Scytosiphon lomentaria (Scytosiphonaceae, Phaeophyceae) in Hokkaido, northern Japan, using molecular markers. Eur. J. Phycol. 40:313-322.   DOI
21 Krause-Jensen, D. & Duarte, C. M. 2016. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9:737-742.   DOI
22 Lane, C. E., Mayes, C., Druehl, L. D. & Saunders, G. W. 2006. A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J. Phycol. 42:493-512.   DOI
23 Li, Q., Zhang, J., Yao, J., Wang, X. & Duan, D. 2016. Development of Saccharina japonica genomic SSR markers using next-generation sequencing. J. Appl. Phycol. 28:1387-1390.   DOI
24 Starko, S., Boo, G. H., Martone, P. T. & Lindstrom, S. 2018. A molecular investigation of Saccharina sessilis from the Aleutian Islands reveals a species complex, necessitating the new combination Saccharina subsessilis. Algae 33:157-166.   DOI
25 Starko, S., Gomez, M. S., Darby, H., Demes, K. W., Kawai, H., Yotsukura, N., Lindstrom, S. C., Keeling, P. J., Graham, S. W. & Martone, P. T. 2019. A comprehensive kelp phylogeny sheds light on the evolution of an ecosystem. Mol. Phylogenet. Evol. 136:138-150   DOI
26 Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595.   DOI
27 van den Burg, S. W. K., van Duijn, A. P., Bartelings, H., van Krimpen, M. M. & Poelman, M. 2016. The economic feasibility of seaweed production in the North Sea. Aquac. Econ. Manag. 20:235-252.   DOI
28 Uwai, S., Arai, S., Morita, T. & Kawai, H. 2007. Genetic distinctness and phylogenetic relationships among Undaria species (Laminariales, Phaeophyceae) based on mitochondrial cox3 gene sequences. Phycol. Res. 55: 263-271.   DOI
29 Uwai, S., Nelson, W., Neill, K., Wang, W. D., Aguilar-Rosas, L. E., Boo, S. M., Kitayama, T. & Kawai, H. 2006. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes: origins and succession of introduced populations. Phycologia 45:687-695.   DOI
30 van den Burg, S. W. K., Rockmann, C., Banach, J. L. & van Hoof, L. 2020. Governing risks of multi-use: seaweed aquaculture at offshore wind farms. Front. Mar. Sci. 7:60.   DOI
31 Voisin, M., Engel, C. R. & Viard, F. 2005. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects. Proc. Natl. Acad. Sci. U. S. A. 102:5432-5437.   DOI
32 Wever, L., Krause, G. & Buck, B. H. 2015. Lessons from stakeholder dialogues on marine aquaculture in offshore wind farms: perceived potentials, constraints and research gaps. Mar. Policy 51:251-259.   DOI
33 Luning, K. 1990. Seaweeds: their environment, biogeography, and ecophysiology. In Yarish, C. & Kirkman, H. (Eds.) Edited Translation of the German Language Edition Meeresbotanik: Verbreitung, Okophysiologie und Nutzung der marinen Makroalgen by Klaus Luning. John Wiley and Sons, Inc., New York, pp. 1-527.
34 Wood, G., Marzinelli, E. M., Verges, A., Campbell, A. H., Steinberg, P. D. & Coleman, M. A. 2020. Using genomics to design and evaluate the performance of underwater forest restoration. J. Appl. Ecol. 57:1988-1998.   DOI
35 Nakayama, T., Watanabe, S., Mitsui, K., Uchida, S. & Inouye, I. 1996. The phylogenetic relationships between Chlamydomonadales and Chlorococcales inferred from the 18S rDNA sequence data. Phycol. Res. 44:47-55.   DOI
36 Klochkova, T. A., Kim, G. H., Klimova, A. V. & Klochkova, N. G. 2018. Taxonomic significance of phenotypic and genotypic characters to describe new genera and species. Kamchatka Res. Inst. Fish. Oceanogr. 51:60-72.
37 Lane, C. E., Lindstrom, S. C. & Saunders, G. W. 2007. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44:634-648.   DOI
38 Liu, T., Wang, X., Wang, G., Jia, S., Liu, G., Shan, G., Chi, S., Zhang, J., Yu, Y., Xue, T. & Yu, J. 2019. Evolution of complex thallus alga: genome sequencing of Saccharina japonica. Front. Genet. 10:378.   DOI
39 Epstein, G. & Smale, D. A. 2017. Undaria pinnatifida: a case study to highlight challenges in marine invasion ecology and management. Ecol. Evol. 7:8624-8642.   DOI
40 Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. 2017. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4:100.
41 FAO (Food and Agriculture Organization of the United Nations). 2021. Fishery and aquaculture statistics. Global aquaculture production 1950-2019 (FishtatJ). Available from: http://www.fao.org/fishery/statistics/software/fishstatj/en. Accessed Jun 21, 2021.
42 FIRA (Korea Fisheries Resources Agency). 2021. Information and data. Available from: https://fira.or.kr. Accessed Jun 21, 2021.
43 Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.   DOI
44 Graf, L., Shin, Y., Yang, J. H., Choi, J. W., Hwang, I. K., Nelson, W., Bhattacharya, D., Viard, F. & Yoon, H. S. 2021. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat. Ecol. Evol. 5:360-368.   DOI
45 Wu, J., Keller, D. P. & Oschlies, A. 2022. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an earth system modeling study. Earth Syst. Dynam. Discuss. Preprint at: https://doi.org/10.5194/esd-2021-104.   DOI
46 Grant, W. A. S. & Bowen, B. W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered. 89:415-426.   DOI
47 McDevit, D. C. & Saunders, G. W. 2010. A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235-248.   DOI
48 APVC (Aquatic Plant Variety Center at the National Institute of Fisheries Science). 2021. List of registration seaweed cultivars. Available from: http://nifs.go.kr/apvc/index.ap. Accessed Aug 10, 2021.
49 Ye, N., Zhang, X., Miao, M., Fan, X., Zheng, Y., Xu, D., Wang, J., Zhou, L., Wang, D., Gao, Y., Wang, Y., Shi, W., Ji, P., Li, D., Guan, Z., Shao, C., Zhuang, Z., Gao, Z., Qi, J. & Zhao, F. 2015. Saccharina genomes provide novel insight into kelp biology. Nat. Commun. 6:69-86.
50 Yong, W. T. L., Thien, V. Y., Rupert, R. & Rodrigues, K. F. 2022. Seaweed: a potential climate change solution. Renew. Sustain. Energy Rev. 159:112222.   DOI
51 Guzinski, J., Ballenghien, M., Daguin-Thiebaut, C., Leveque, L. & Viard, F. 2018. Population genomics of the introduced and cultivated Pacific kelp Undaria pinnatifida: marinas-not farms-drive regional connectivity and establishment in natural rocky reefs. Evol. Appl. 11:1582-1597.   DOI
52 Ha, D. S., Hwang, E. K., Yoo, H. I., Lee, S. J. & Baek, J. I. 2018. Cultivation manual of Undaria pinnatifida. Maple Desgine Co., Busan, 105 pp.
53 Choi, J. W., Graf, L., Peters, A. F., Cock, J. M., Nishitsuji, K., Arimoto, A., Shoguchi, E., Nagasato, C., Choi, C. G. & Yoon, H. S. 2020. Organelle inheritance and genome architecture variation in isogamous brown algae. Sci. Rep. 10:2048.   DOI
54 Bolton, J. J. 2010. The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol. Mar. Res. 64:263-279.   DOI
55 Park, M., Shin, S. K., Do, Y. H., Yarish, C. & Kim, J. K. 2018. Application of open water integrated multi-trophic aquaculture to intensive monoculture: a review of the current status and challenges in Korea. Aquaculture 497:174-183.   DOI
56 Park, M. S., Kim, J. K., Shin, S., Min, B. H. & Samanta, P. 2021b. Trophic fractionation in an integrated multi-trophic aquaculture off Tongyoung Coast: a stable isotope approach. Aquaculture 536:736-454.
57 Saunders, G. W. & Druehl, L. D. 1992. Nucleotide sequences of the small-subunit ribosomal RNA genes from selected Laminariales (Phaeophyta): implications for kelp evolution. J. Phycol. 28:544-549.   DOI
58 Saunders, G. W. & Druehl, L. D. 1993. Revision of the kelp family Alariaceae and the taxonomic affinities of Lessoniopsis Reinke (Laminariales, Phaeophyta). Hydrobiologia 260/261:689-697.   DOI
59 Boo, S. M., Lee, W. J., Yoon, H. S., Kato, A. & Kawai, H. 1999. Molecular phylogeny of Laminariales (Phaeophyceae) inferred from small subunit ribosomal DNA sequences. Phycol. Res. 47:109-114.   DOI
60 Buschmann, A. H. & Camus, C. 2019. An introduction to farming and biomass utilisation of marine macroalgae. Phycologia 58:443-445.   DOI
61 Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. 2011. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23:877-886.   DOI
62 Shan, T., Pang, S., Liu, F., Xu, N., Zhao, X. & Gao, S. 2012. High genetic diversity in gametophyte clones of Undaria pinnatifida from Vladivostok, Dalian and Qingdao revealed using microsatellite analysis. Chin. J. Oceanol. Limnol. 30:225-230.   DOI
63 Setchell, W. A. 1893. On the classification and geographical distribution of the Laminariaceae. Trans. Conn. Acad. Arts Sci. 9:333-375.
64 Setchell, W. A. & Gardner, N. L. 1925. The marine algae of the Pacific coast of North America. Part III. Melanophyceae. Univ. Calif. Publ. Bot. 8:383-898.
65 Shan, T. & Pang, S. 2009. Assessing genetic identity of sporophytic offspring of the brown alga Undaria pinnatifida derived from monocrossing of gametophyte clones by use of amplified fragment length polymorphism and microsatellite markers. Phycol. Res. 57:36-44.   DOI
66 Park, J. -S., Shin, S. K., Wu, H., Yarish, C., Yoo, H. I. & Kim, J. K. 2021a. Evaluation of nutrient bioextraction by seaweed and shellfish aquaculture in Korea. J. World Aquac. Soc. 52:1118-1134.   DOI
67 Yoon, H. S. & Boo, S. M. 1999. Phylogeny of Alariaceae (Phaeophyta) with special reference to Undaria based on sequences of the RuBisCo spacer region. Hydrobiologia 398/399:47-55.   DOI
68 Harper, J. T. & Saunders, G. W. 2001. Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large and small subunit rDNA sequence data. J. Phycol. 37:1073-1082.   DOI
69 Yoo, C. I., Payuda, T., Kim, H. T. & Ryu, C. R. 2011. A study of conceptual design for constructing offshore biomass culturing and production management system. In Annu. Conf. Korea Assoc. Ocean Sci. Technol. Soc., Korea Association of Ocean Science and Technology Societies, Daejeon, pp. 803-805.
70 Yoo, H. I., Lee, K. H., Kim, S. H., Ha, D. S. & Hwang, E. K. 2018. Regeneration and the maturation induction of free-living gametophytes of a kelp Saccharina sculpera (Phaeophyceae). Korean J. Environ. Biol. 36:576-583.   DOI
71 Yoon, H. S., Hackett, J. D. & Bhattacharya, D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U. S. A. 99:11724-11729.   DOI
72 Zhang, J., Yao, J., Hu, Z. -M., Jueterbock, A., Yotsukura, N., Krupnova, T. N., Nagasato, C. & Duan, D. 2019. Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol. Appl. 12:791-803.   DOI
73 Zhang, J., Yao, J. -T., Sun, Z. -M., Fu, G., Galanin, D. A., Nagasato, C., Motomura, T., Hu, Z.-M. & Duan, D. -L. 2015. Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol. Biol. 15:237.   DOI
74 Hwang, E. K., Choi, J. W., Yoon, H. S. & Park, C. S. 2020. Morphological and genetic differences between Korean Sugwawon No. 301 and Chinese Huangguan No. 1 strains of Saccharina japonica (Phaeophyceae) in a Korean aquaculture farm. J. Appl. Phycol. 32:2245-2252.   DOI
75 Hoegh-Guldberg, O. 2019. The ocean as a solution to climate change: five opportunities for action. Available from: http://www.oceanpanel.org/climate. Accessed Jun 21, 2021.
76 Hu, Z. -M., Shan, T. -F., Zhang, J., Zhang, Q. -S., Critchley, A. T., Choi, H. -G., Yotsukura, N., Liu, F. -L. & Duan, D. -L. 2021. Kelp aquaculture in China: a retrospective and future prospects. Rev. Aquac. 13:1324-1351.   DOI
77 Huh, M. K. & Huh, H. W. 2002. Genetic diversity and population structure of wild and cultivated brown sea mustard, Undaria pinnatifida. Protistology 2:159-168.
78 Hwang, E. K., Gong, Y. G. & Park, C. S. 2012. Cultivation of a hybrid of free-living gametophytes between Undariopsis peterseniana and Undaria pinnatifida: morphological aspects and cultivation period. J. Appl. Phycol. 24:401-408.   DOI
79 Hwang, E. K., Ha, D. S. & Park, C. S. 2017. Strain selection and initiation timing influence the cultivation period of Saccharina japonica and their impact on the abalone feed industry in Korea. J. Appl. Phycol. 29:2297-2305.   DOI
80 Yoon, H. S., Lee, J. Y., Boo, S. M. & Bhattacharya, D. 2001. Phylogeny of Alariaceae, Laminariaceae, and Lessoniaceae (Phaeophyceae) based on plastid-encoded RuBisCo spacer and nuclear-encoded ITS sequence comparisons. Mol. Phylogenet. Evol. 21:231-243.   DOI
81 Shan, T., Pang, S., Wang, X., Li, J. & Su, L. 2018. Assessment of the genetic connectivity between farmed and wild populations of Undaria pinnatifida (Phaeophyceae) in a representative traditional farming region of China by using newly developed microsatellite markers. J. Appl. Phycol. 30:2707-2714.   DOI
82 Shan, T., Pang, S., Wang, X., Li, J., Su, L., Schiller, J., Lackschewitz, D., Hall-Spencer, J. M. & Bischof, K. 2019. Genetic analysis of a recently established Undaria pinnatifida (Laminariales: Alariaceae) population in the northern Wadden Sea reveals close proximity between drifting thalli and the attached population. Eur. J. Phycol. 54:154-161.   DOI
83 Shan, T., Yotsukura, N. & Pang, S. J. 2017. Novel implications on the genetic structure of representative populations of Saccharina japonica (Phaeophyceae) in the Northwest Pacific as revealed by highly polymorphic microsatellite markers. J. Appl. Phycol. 29:631-638.   DOI
84 Shan, T. F., Pang, S. J., Zhang, Y. R., Yakovleva, I. M. & Skriptsova, A. V. 2011. An AFLP-based survey of genetic diversity and relationships of major farmed cultivars and geographically isolated wild populations of Saccharina japonica (Phaeophyta) along the northwest coasts of the Pacific. J. Appl. Phycol. 23:35-45.   DOI
85 Hwang, E. K. & Park, C. S. 2020. Seaweed cultivation and utilization of Korea. Algae 35:107-121.   DOI
86 Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B 270:313-321.   DOI
87 Hwang, E. K., Hwang, I. K., Park, E. J., Gong, Y. G. & Park, C. S. 2014. Development and cultivation of F2 hybrid between Undariopsis peterseniana and Undaria pinnatifida for abalone feed and commercial mariculture in Korea. J. Appl. Phycol. 26:747-752.   DOI
88 Hwang, E. K., Liu, F., Lee, K. H., Ha, D. S. & Park, C. S. 2018. Comparison of the cultivation performance between Korean (Sugwawon No. 301) and Chinese strains (Huangguan No. 1) of kelp Saccharina japonica in an aquaculture farm in Korea. Algae 33:101-108.   DOI
89 Hwang, E. K., Yotsukura, N., Pang, S. J., Su, L. & Shan, T. F. 2019. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 58:484-495.   DOI
90 Intergovernmental Panel on Climate Change. 2021. Climate change 2021: the physical science basis. Working group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, 3949 pp.
91 Jackson, C., Salomaki, E. D., Lane, C. E. & Saunders, G. W. 2017. Kelp transcriptomes provide robust support for interfamilial relationships and revision of the little known Arthrothamnaceae (Laminariales). J. Phycol. 53:1-6.   DOI
92 Jesumani, V., Du, H., Aslam, M., Pei, P. & Huang, N. 2019. Potential use of seaweed bioactive compounds in skincare: a review. Mar. Drugs 17:688.   DOI
93 Kawai, H., Hanyuda, T., Lindeberg, M. & Lindstrom, S. C. 2008. Morphology and molecular phylogeny of Aureophycus aleuticus gen. et sp. nov. (Laminariales, Phaeophyceae) from the Aleutian Islands. J. Phycol. 44:1013- 1021.   DOI
94 Silberfeld, T., Leigh, J. W., Verbruggen, H., Cruaud, C., de Reviers, B. & Rousseau, F. 2010. A multi-locus timecalibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the "brown algal crown radiation". Mol. Phylogenet. Evol. 56:659-675.   DOI
95 Sohn, C. -H. 1996. Historical review on seaweed cultivation of Korea. Algae 11:357-364.
96 Sohn, C. H. 1998. The seaweed resources of Korea. In Critchley, A. T. & Masao, O. (Eds.) Seaweed Resources of the World. Japan International Cooperation Agency, Yokosuka, pp. 15-33.
97 Jiang, G. -L. 2015. Molecular marker-assisted breeding: a plant breeder's review. In Al-Khayri, J. M., Jain, S. M. & Johnson, D. V. (Eds.) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer International Publishing, Cham, pp. 431-472.
98 Kawai, H., Hanyuda, T., Gao, X., Terauchi, M., Miyata, M., Lindstrom, S. C., Klochkova, N. G. & Miller, K. A. 2017. Taxonomic revision of the Agaraceae with a description of Neoagarum gen. nov. and reinstatement of Thalassiophyllum. J. Phycol. 53:261-270.   DOI
99 Boo, G. H., Lindstrom, S. C., Klochkova, N. G., Yotsukura, N., Yang, E. C., Kim, H. G., Waaland, J. R., Cho, G. Y., Miller, K. A. & Boo, S. M. 2011. Taxonomy and biogeography of Agarum and Thalassiophyllum (Laminariales, Phaeophyceae) based on sequences of nuclear, mitochondrial, and plastid markers. Taxon 60:831-840.   DOI