• Title/Summary/Keyword: Carbon reduction performance

Search Result 333, Processing Time 0.028 seconds

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions (다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매)

  • Jang, Jeonghee;Sharma, Monika;Sung, Hukwang;Kim, Sunpyo;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material (CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성)

  • Jung, Min zy;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Silicon/Carbon/CNT composites as anode materials for lithium-ion batteries were synthesized to overcome the large volume change during lithium alloying-de alloying process and low electrical conductivity. Silicon/Carbon/CNT composites were prepared by the fabrication processes including the synthesis of SBA-15, magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling, carbonization of phenolic resin with CNT and HCl etching. The prepared Silicon/Carbon/CNT composites were analysed by XRD, SEM, BET and EDS. In this study, the electrochemical effect of CNT content to improve the capacity and cycle performance was investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using Silicon/Carbon/CNT composite (Si:CNT=93:7 in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%) has better capacity (1718 mAh/g) than those of other composition coin cells. The cycle performance of coin cell was improved as CNT content was increased. It is found that the coin cell (Si:CNT=89:11 in weight) has best capacity retension (83%) after 2nd cycle.

A Study on the Estimation Method of the Environmental Load Intensity for Analyzing GHG Reduction Effect of Han-Ok

  • Kim, Sunghee
    • Architectural research
    • /
    • v.15 no.3
    • /
    • pp.143-150
    • /
    • 2013
  • The Korean government recently has rediscovered the potential value of Han-Ok, the Korean traditional house, as an eco-friendly building. In order to objectively verify the environmental performance of Han-Ok as a low carbon green building, this paper suggests the analysis method of GHG emission load of Korean traditional house, based on Life Cycle Assessment, which is commonly abbreviated to "LCA". The environmental impacts caused by building construction and operation can be analyzed through the sum of input and output data from every phase. The study particularly describes the GHG reduction effect by using traditional building materials such as wood products, traditional clay roof tiles, and mud, which are mainly used to construct Han-Ok. Also the study proposes the method for comparative analysis of quantity of GHG emissions in building's entire life cycle so that the data can be used as a reliable basis to optimize the environmental performance of building.

Finding Optimal Conditions for the Densification Process of Carbon Materials (탄소 소재 치밀화 공정의 밀도향상을 위한 최적 조건 설정)

  • Kwon, Choonghee;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.76-82
    • /
    • 2017
  • Recently, the material industry in the world has started appreciating the value of new materials that can overcome the limitation of steel material. In particular, new materials are expected to play a very important role in the future industry, demonstrating superior performance compared to steel in lightweight materials and ability to maintain in high temperature environments. Carbon materials have recently increased in value due to excellent physical properties such as high strength and ultra lightweight compared to steel. However, they have not overcome the limitation of productivity and price. The carbon materials are classified into various composites depending on the purpose of use and the performance required. Typical composites include carbon-glass, carbon-carbon, and carbon-plastic composites. Among them, carbon-carbon composite technology is a necessary technology in aviation and space, and can be manufactured with high investment cost and technology. In this paper, in order to find the optimal conditions to achieve productivity improvement and cost reduction of carbon material densification process, the correlation between each process parameters and results of densification is first analyzed. The main process parameters of the densification process are selected by analyzing the correlation results. And then a certain linear relationship between major process variables and density of carbon materials is derived by performing a regression analysis based on the historical production result data. Using the derived casualty, the optimal management range of major process variables is suggested. Effective process operation through optimal management of variables will have a great effect on productivity improvement and manufacturing cost reduction by shortening the lead time.

Photosynthesis of Guard Cell Chloroplast

  • Goh, Chang-Hyo
    • Journal of Photoscience
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Chlorophasts are a central structural feature of stomatal guard cells. Guard cell chloroplasts have both photosystems I and II (PS I and II), carry out O2 evoluation , cyclic and noncyclic photophosporylation, and possess the Calvin-Benson cycle enzymes involved in CO2 fixation. These imply that guard cell chloroplasts have a normal photosynthetic carbon reduction pathway just like their mesophyll counterparts, indicating similar fuctional organization of thylakoid membranes in both types of mesophyll and guard cell chloroplasts. It has been, however, found that guard cell chloroplasts have distinctive and comparative properties in their photosynthetic performance. In this article, I review the intrinsic features on the light reaction of and carbon reduction by guard cell chloroplasts.

  • PDF

Methodology of the Fuel Conversion Project and Analysis of the Offset System of the Greenhouse Gas Emission Trading System (연료 전환 사업의 방법론과 온실가스 배출권거래제 상쇄제도 분석)

  • Kim, Eok yong;Shin, Min chang;Park, Jeong hoon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.478-485
    • /
    • 2022
  • The certification performance issued through an external business is sold to companies subject to the emission trading system allocation, and the company subject to the allocation can secure the quota by converting the purchased external business certification performance into offset credits. In this methodology, when fossil fuels that used existing oil boilers (by oil type) were replaced with boilers using propane gas with a relatively low carbon content, the amount of carbon dioxide emission reduction by oil type was recognized. As an initial analysis to make up for the insufficient quota of large corporations, the amount of carbon reduction emissions and emission rights trading was calculated.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

High Electrochemical Activity of Pt-Cu Alloy Support on Carbon for Oxygen Reduction Reaction (산소 환원 반응을 위한 탄소기반 Pt-Cu 합금의 높은 전기적 촉매 활성)

  • KIM, HAN SEUL;RYU, SU CHAK;LEE, YOUNG WOOK;SHIN, TAE HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.549-555
    • /
    • 2019
  • Electrocatalysis of oxygen reduction reaction (ORR) using Pt nanoparticles or bimetal on carabon was studied. Currently, the best catalyst is platinum, which is a limited resource and expensive to commercialize. In this paper, we investigated the cheaper and more active electrocatalysts by making Pt nanoparticles and adding 3D transition metal such as copper. Electrocatalysts were obtained by chemical reduction based on ethylene glycol solutions. Elemental analysis and particle size were confirmed by XRD and TEM. The electrochemical surface area (ECSA) and activity of the catalyst were determined by electrochemical techniques such as cyclic voltammetry and linear sweep voltammetry method. The commercialized Pt support on carbon (Pt/C, JM), synthesis Pt/C and synthesis Pt3Cu1 alloy nanoparticles supported on carbon were compared. We confirmed that the synthesized Pt3-Cu1/C has high electrochemical performance than commercial Pt/C. It is expected to develop an electrocatalyst with high activity at low price by increasing the oxygen reduction reaction rate of the fuel cell.

Technique Status of Carbon Fibers-reinforced Composites for Aircrafts (항공기용 탄소섬유강화 복합재료의 기술동향)

  • Kim, Ki-Seok;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • Recently, the need of new materials which have excellent physical properties and functional characteristics has been increased in all industries. In particular, body weight reduction via new materials in aerospace industry was significantly emphasized by the requirement of environmental protection through the fuel savings and reduction of greenhouse gas, i.e., carbon dioxide($CO_2$). Also, for various applications, the development of high performance custom materials with excellent physical properties was the current primary goal of materials science and technology. In this respect, carbon fiber-reinforced composites were the most candidates among the various materials. Indeed, carbon fiber-reinforced composites have been lately used as essential materials for the weight reduction of aircraft and the demand has increased remarkably. Therefore, in this paper, we focused on the need of carbon fiber composites in the fields of aircraft and technique status.

Electrochemical Reduction of Thionyl Chloride : Catalytic Effects of Metalomacrocyclic Compounds (SOCl$_2$의 전기화학적 환원 : 금속-거대고리 화합물의 촉매효과)

  • Woo-Seong Kim;Yong-Kook Choi;Chjo Ki-Hyung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.744-752
    • /
    • 1993
  • Electrochemical reduction of thionyl chloride has been carried out at glassy carbon and microelectrode that modified by macrocyclic compounds. The catalyst molecules of macrocyclic compounds were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. The concentration of catalysts and electrode immersion time were found to affect the catalyst performance strongly. Significant improvements in cell performance have been noted in terms of both exchange rate constants of up to 10 times and power densities of up to 220% at glassy carbon electrode. The diffusion coefficients obtained at carbon microelectrode were slightly different from that determined at glassy carbon electrode.

  • PDF